Incubation of 14C-trichloroethylene vapor with rat liver microsomes: Uptake of radioactivity and covalent protein binding of metabolites

  • H. M. Bolt
  • A. Buchter
  • L. Wolowski
  • D. L. Gil
  • W. Bolt
Article

Summary

Microsomal uptake irreversible protein binding of labelled trichloroethylene was measured following incubation with rat liver microsomes in an all-glass vacuum system.

If the cofactor for oxidative metabolism, NADPH, is not added, the gaseous trichloroethylene rapidly equilibrates with the microsomal suspension. Addition of NADPH results in a further uptake of 14C-trichloroethylene from the gas phase, linearly with time, which is due to enzymic metabolism. This part of uptake is inhibited by some arylimidazoles and 1.2.3-benzothiadiazoles. The compounds of greatest inhibitory potency were 6-chloro-1.2.3-benzothiadiazole and 5,6-dimethyl-1.2.3-benzothiadiazole. Part of.the metabolites of 14C-trichloroethylene formed by rat liver microsomes were irreversibly bound to microsomal protein, amounting up to 1 nmol per mg microsomal protein per hour. Model experiments on uptake of 14C-trichloroethylene from the gas phase by albumin solutions and liposomal suspensions (from lecithin) showed a rapid equilibration of trichloroethylene also with these systems. Comparison with previous analogous data on vinyl chloride revealed an about 10 times higher affinity of trichloroethylene to albumin and lipid, consistent with the behaviour of both compounds in the rat liver microsomal system.

Key words

Trichloroethylene Vinyl chloride Rat liver microsomes Covalent protein binding of trichloroethylene Albumin Lecithin liposomes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbin, A., Brésil, H., Croisy, A., Jacquignon, P., Malaveille, C., Montesano, R., Bartsch, H.: Liver-microsomemediated formation of alkylating agents from vinyl bromide and vinyl chloride. Biochem. Biophys. Res. Commun. 67, 596–603 (1975)Google Scholar
  2. Bolt, H.M., Kappus, H., Buchter, A., Bolt, W.: Disposition of 1,2-14C-vinyl chloride in the rat. Arch. Toxicol. 35, 153–162 (1976)Google Scholar
  3. Bolt, H., Kassel, H.: Effect of insecticide synergists on microsomal oxidation of oestradiol and ethinyloestradiol and on microsomal drug metabolism. Xenobiotica 6, 33–38 (1976)Google Scholar
  4. Bolt, H.M., Laib, R.J., Kappus, H., Buchter, A.: Pharmacokinetics of vinyl chloride in the rat. Toxicology 7, 179–188 (1977)Google Scholar
  5. Bonse, G., Urban, Th., Reichert, D., Henschler, D.: Chemical reactivity, metabolic oxirane formation and biological reactivity of chlorinated ethylenes in the isolated perfused rat liver preparation. Biochem. Pharmacol. 24, 1829–1834 (1975)Google Scholar
  6. Byington, K.H., Leibman, K.C.: Metabolism of trichloroethylene in liver microsomes. II. Identification of the reaction product as chloral hydrate. Mol. Pharmacol. 1, 247–254 (1965)Google Scholar
  7. Ertle, T., Henschler, D., Muller, G., Spassowski, M.: Metabolism of trichlorethylene in man. I. The significance of trichloroethanol in long-term exposure conditions. Arch. Toxicol. 29, 171–188 (1972)Google Scholar
  8. Gil, D.L., Wilkinson, C.F.: Structure-activity relationships of 1.2.3-benzothiadiazoles as synergists for carbaryl against the house fly (musca domestica). Pesticide Biochem. Physiol. 6, 338–349 (1976)Google Scholar
  9. Greim, H., Bonse, G., Radwan, Z., Reichert, D., Henschler, D.: Mutagenicity in vitro and potential carcinogenicity of chlorinated ehtylenes as a function of metabolic oxirane formation. Biochem. Pharmacol. 24, 2013–2017 (1975)Google Scholar
  10. Kappus, H., Bolt, H.M., Buchter, A., Bolt, W.: Rat liver microsomes catalyse covalent binding of 1,2-14C-vinyl chloride to macromolecules. Nature 257, 134–135 (1975)Google Scholar
  11. Kappus, H., Bolt, H.M., Buchter, A., Bolt, W.: Liver microsomal uptake of 14C-vinyl cloride and transformation to protein alkylating metabolites in vitro. Toxicol. Appl. Pharmacol. 37, 461–471 (1976)Google Scholar
  12. Laib, R.J., Bolt, H.M.: Alkylation of nucleic acids by metabolites of vinyl chloride in vitro and in vivo: Formation of 1-N6-etheno-adenosine. Arch. Pharmacol., Suppl. 297, II, R22 (1977)Google Scholar
  13. Leibmann, K.C.: Metabolism of trichloroethylene in liver microsomes. 1. Charcteristics of the reaction. Mol. Pharmacol. 1, 239–246 (1965)Google Scholar
  14. Leibman, K.C., McAllister, W.J.: Metabolism of trichloroethylene in liver microsomes. III. Induction of the enzymic activity and its effect on excretion of metabolites. J. Pharmacol. Exp. Ther. 157, 574–580 (1967)Google Scholar
  15. Müller, G., Spassovski, M., Henschler, D.: Metabolism of trichloroethylene in man. II. Pharmacokinetics of metabolites. Arch. Toxicol. 32, 283–295 (1974)Google Scholar
  16. National Cancer Institute, US Department of Health, Education and Welfare: Carcinogenesis bioassay of trichloroethylene. Carcinogenesis Technical Report Series No. 2. Washington, D.C.: US Goverment Printing Office 1976Google Scholar
  17. Remmer, H., Greim, H., Schenkman, J.B., Estabrook, R.W.: Methods for the elevation of hepatic microsomal mixed function oxidase levels and cytochrome P-450. Methods. Enzymol. 10, 703–708 (1967)Google Scholar
  18. Van Duuren, B.L.: On the possible mechanism of carcinogenic action of vinyl chloride. Ann. N.Y. Acad. Sci. 246, 258–267 (1975)Google Scholar
  19. Van Duuren, B.L., Banerjee, S.: Covalent interaction of metabolites of the carcinogen trichloroethylene in rat liver microsomes. Cancer Res. 36, 2419–2422 (1976)Google Scholar
  20. Wilkonson, C.F.: Insecticide synergists and their mode of action. In: Pesticide chemistry (ed. A.S. Tahori)., pp. 117–159. Proc. 2nd Internat. Congr. Pest. Chem. New York: Gordon and Breach 1971Google Scholar
  21. Wilkinson, C.F., Hetnarski, K., Hicks, L.J.: Substituted imidazoles as inhibitors of microsomal oxidation and insecticide synergists. Pesticide Biochem. Physiol. 4, 299–312 (1974)Google Scholar
  22. Wilkinson, C.F., Brattsten, L.B.: Microsomal drug metabolizing enzymes in insects. Drug Metab. Rev. 1, 153–228 (1972)Google Scholar
  23. Wollenberg, P., Scheulen, M., Bolt, H.M., Kappus, H., Remmer, H.: Wirkung von 2-Hydroxyöstradiol-17β auf den NADPH-abhängigen Elektronentransport in Rattenleber-Mikrosomen in vitro. Hoppe-Seyler's Z. physiol. Chem. 357, 351–357 (1976)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • H. M. Bolt
    • 1
  • A. Buchter
    • 2
  • L. Wolowski
    • 1
  • D. L. Gil
    • 3
  • W. Bolt
    • 2
  1. 1.Institut für Toxikologie der UniversitätTübingenGermany
  2. 2.Institut und Poliklinik für Arbeits- und Sozialmedizin der UniversitätKölnGermany
  3. 3.Departmento de Bioquimica, Facultad de MedicinaUniversidad de ChileSantiagoChile

Personalised recommendations