Skip to main content
Log in

Lipid metabolism in chromoplast membranes from the daffodil: Glycosylation and acylation

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The non-photosynthetic chromoplast membranes from the corona ofNarcissus pseudonarcissus L. were investigated for their lipid synthetic capabilities. The following activities were detected: galactosylation of diacylglycerol and galactosydiacylglycerols, glycosylation of sterols, acylation of monogalactosyldiacylglycerol and steryl glycosides from an unknown endogenous donor, acylation of phospholipids from acyl-CoA, and acylation of phosphatidyl inositol from phosphatidyl choline. Furthermore, activities of an acyl thioesterase, a sugar epimerase, and a phospholipase A2 were measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MGDG:

monogalactosyldiacylglycerol

DGDG:

digalactosyldiacylglycerol

TGDG:

tri-and tetragalactosyldiacylglycerol

SG:

steryl glycoside

SL:

sulfolipid

ACP:

acyl carrier protein

References

  • Axelos, M., Péaud-Lenoel, C.: Identification de l'activité phosphatidyléthanolamine: stérolglucoside transacylase extraite du blé. C.R. Acad. Sc. Paris. Ser. D237, 1434–1437 (1971)

    Google Scholar 

  • Beeler, D.A., Porter, J.W.: The enzymatic conversion of phytoene to phytofluene. Biochem. biophys. Res. Commun.8, 367–371 (1962)

    Google Scholar 

  • Charlton, J., Treharne, K.J., Goodwin, T.W.: Incorporation of [2-14C]mevalonic acid into phytoene by isolated chloroplasts. Biochem. J.105, 205–208 (1967)

    Google Scholar 

  • Clark, B.R., Rubin, R.T., Arthur, R.G.: A new micro method for determination of cholesterol in serum. An. Biochem.24, 27–33 (1968)

    Google Scholar 

  • Decker, K., Uehleke, H.: Eine enzymatische Isomerisierung von Lycopin undβ-Carotin. Hoppe-Seyler Z. physiol. Chem.323, 61–71 (1961)

    Google Scholar 

  • Douce, R.: Sites of biosynthesis of galactolipids in spinach chloroplasts. Science183, 852–853 (1974)

    Google Scholar 

  • Eichenberger, W., Grob, E.C.: Enzymatic formation of steryl glycosides by homogenates and chloroplast preparations from lettuce and spinach leaves. In: Progress in Photosynthesis Research (H. Metzner, ed.) Vol. I, pp. 338–344. München: C. Lichtenstern 1969

    Google Scholar 

  • Eichenberger, W., Grob, E.C.: Enzymatische Acylierung von Sterin-14C-glucosid durch ein lösliches Enzym aus Karotten. Chimia24, 394–396 (1970)

    Google Scholar 

  • Eichenberger, W., Menke, W.: Sterole in Blättern und Chloroplasten. Z. Naturforsch.21b, 859–867 (1966)

    Google Scholar 

  • Eichenberger, W., Newman, D.W.: Hexose transfer from UDP-hexose in the formation of steryl glycosides and esterified steryl glycosides in leaves. Biochem. biophys. Res. Commun.32, 366–374 (1968)

    Google Scholar 

  • Falk, H., Liedvogel, B., Sitte, P.: Circular DNA in isolated chromoplasts. Z. Naturforsch.29c, 541–544 (1974)

    Google Scholar 

  • Forsee, W.T., Laine, R.A., Elbein, A.D.: Solubilization of a particulate UDP-glucose: sterolβ-glucosyltransferase in developing cotton fibers and seeds and characterization of steryl-6-acyl-D-glucosides. Arch. Biochem.161, 248–259 (1974)

    Google Scholar 

  • Hill, H.M., Calderwood, S.K., Rogers, L.J.: Conversion of lycopene toβ-carotene by plastids isolated from higher plants. Phytochem.10, 2051–2058 (1971)

    Google Scholar 

  • Joyard, J., Douce, R.: Mise en evidence et role des diacylglyerols de l'envelope des chloroplastes d'épinard. Biochim. Biophys. Acta424, 125–131 (1976)

    Google Scholar 

  • Kannangara, C.G., Stumpf, P.K.: Fat metabolism in higher plants L. The biosynthesis of polyunsaturated fatty acids by isolated spinach chloroplasts. Arch. Biochem.148, 414–424 (1972)

    Google Scholar 

  • Kannangara, C.G., Jacobson, B.S., Stumpf, P.K.: Fat metabolism in higher plants LVII. A comparison of fatty acid synthesizing enzymes in chloroplasts isolated from mature and immature leaves of spinach. Plant Physiol52, 156–161 (1973)

    Google Scholar 

  • Kushwaha, S.C., Subbarayan, C., Beeler, D.E., Porter, J.W.: The conversion of lycopene-15,15′-3H to cyclic carotenes by soluble extracts of higher plant plastids. J. Biol. Chem.244, 3635–3642 (1969)

    Google Scholar 

  • Liedvogel, B., Kleinig, H.: Galactolipid synthesis in chromoplast internal membranes of the daffodil. Planta (Berl.)129, 19–21 (1976)

    Google Scholar 

  • Liedvogel, B., Sitte, P., Falk, H.: Chromoplasts in the daffodil: fine structure and chemistry. Cytobiol.12, 155–174 (1976)

    Google Scholar 

  • Marshall, S.O., Kates, M.: Biosynthesis of phosphatidyl glycerol by cell-free preparations from spinach leaves. Biochim. Biophys. Acta260, 558–570 (1972)

    Google Scholar 

  • Mollenhauer, H.H., Koput, C.: Chromoplast development in daffodil. J. Microscopie7, 1045–1050 (1968)

    Google Scholar 

  • Mudd, J.B., Garcia, R.E.: Biosynthesis of glycolipids. In: Recent Advances in the Chemistry and Biochemistry of Plant Lipids (T. Galliard, E.I. Mercer, eds.), pp. 161–201. London-New York-San Francisco: Academic Press 1975

    Google Scholar 

  • Ongun, A., Mudd, J.B.: The biosynthesis of steryl glucosides in plants. Plant Physiol.45, 255–262 (1970)

    Google Scholar 

  • Péaud-Lenoel, C., Axelos, M.: Uridine diphosphate glucose: stérol transglucosylase. Purification et activité de préparations particuliaires et solubles extraites du blé. C.R. Acad. Sc. Paris, Ser. D273, 1057–1060 (1971)

    Google Scholar 

  • Poincelot, R.P.: Isolation and lipid composition of spinach chloroplast envelope membranes. Arch. Biochem.159, 134–142 (1973)

    Google Scholar 

  • Rebeiz, C.A., Castelfranco, P.A.: Protochlorophyll and chlorophyll biosynthesis in cell-free systems from higher plants. Ann. Rev. Plant Physiol.24, 129–172 (1973)

    Google Scholar 

  • Roughan, P.G.: Phosphatidyl choline donor of 18-carbon unsaturated fatty acids for glycerolipid biosynthesis. Lipids10, 609–614 (1975)

    Google Scholar 

  • Shine, W.E., Mancha, M., Stumpf, P.K.: Fat metabolism in higher plants. Differential incorporation of acyl-coenzymes A and acyl-acyl carrier proteins into plant microsomal lipids. Arch. Biochem.173, 472–479 (1976)

    Google Scholar 

  • Thomas, G., Threlfall, D.R.: Synthesis of polyprenyltoluquinols from homogentisate and polyprenyl pyrophosphates in particulate fractions ofEuglena and sugar beet. Biochem. J.142, 437–440 (1974)

    Google Scholar 

  • Van Hummel, H.C., Hulsebos, T.J.M., Wintermans, J.F.G.M.: Biosynthesis of galactosyl diglycerides by non-green fractions from chloroplasts. Biochim. Biophys. Acta380, 219–226 (1975)

    Google Scholar 

  • Williams, J.P., Watson, G.R., Leung, S.P.K.: Galactolipid synthesis inVicia faba leaves. II. Formation and desaturation of long chain fatty acids in phosphatidyl choline, phosphatidyl glycerol and the galactolipids. Plant Physiol.57, 179–184 (1976)

    Google Scholar 

  • Wojciechowski, Z.A., Zimowski, J.: Acyl composition and biosynthesis of acylated steryl glucosides inCalendula officinalis. Biochim. Biophys. Acta398, 111–117 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liedvogel, B., Kleinig, H. Lipid metabolism in chromoplast membranes from the daffodil: Glycosylation and acylation. Planta 133, 249–253 (1977). https://doi.org/10.1007/BF00380685

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00380685

Key words

Navigation