Skip to main content
Log in

Resource partitioning of sonar frequency bands in rhinolophoid bats

Oecologia Aims and scope Submit manuscript

Summary

In the Constant Frequency portions of the orientation calls of various Rhinolophus and Hipposideros species, the frequency with the strongest amplitude was studied comparatively. (1) In the five European species of the genus Rhinolophus call frequencies are either species-specific (R. ferrumequinum, R. blasii and R. euryale) or they overlap (R. hipposideros and R. mehelyi). The call frequency distributions are approximately 5–9 kHz wide, thus their ranges spead less than ±5% from the mean (Fig. 1). Frequency distributions are considerably narrower within smaller geographic areas. (2) As in other bat groups, call frequencies of the Rhinolophoidea are negatively correlated with body size (Fig. 3). Regression lines for the genera Rhinolophus and Rhinolophus, species from dryer climates have on the average higher call frequencies than species from tropical rain forests. (4) The Krau Game Reserve, a still largely intact rain forest area in Malaysia, harbours at least 12 syntopic Rhinolophus and Hipposiderso species. Their call frequencies lie between 40 and 200 kHz (Fig. 2). Distribution over the available frequency range is significantly more even than could be expected from chance alone. Two different null hypotheses to test for random character distribution were derived from frequency-size-relations and by sampling species assemblages from a species pool (Monte Carlo method); both were rejected. In particular, call frequencies lying close together are avoided (Figs. 4, 5). Conversely, the distribution of size ratios complied with a corresponding null hypothesis. This even distribution may be a consequence of resource partitioning with respect to prey type. Alternatively, the importance of these calls as social signals (e.g. recognition of conspecifics) might have necessitated a communication channel partitioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ahlen I (1988) Sonar used by flying Lesser horseshoe bats, Rhinolophus hipposideros (Bechstein, 1800) (Rhinolophidae, Chiroptera), in hunting habitats. Z Säugetierkd 53:65–68

    Google Scholar 

  • Andersen BA, Miller LA (1977) A portable ultrasonic detection system for recording bat cries in the field. J Mammal 58:226–229

    Google Scholar 

  • Barclay RMR (1982) Interindividual use of echolocation calls: eavesdropping by bats. Behav Ecol Sociobiol 10:271–275

    Google Scholar 

  • Brandl R, Topp W (1985) Size structure of Pterostichus spp. (Carabidae): aspects of competition. Oikos 44:234–238

    Google Scholar 

  • Brandl R, Utschik H (1985) Size, ecology and wading birds: a nonparsimonious view. Naturwissenschaften 72:550–552

    Google Scholar 

  • Case TJ, Faaborg J, Sidell R (1983) The role of body size in the assembly of West Indian bird communities. Evolution 37:1062–1074

    Google Scholar 

  • Connell JH (1980) Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35:131–138

    Google Scholar 

  • Fenton MB (1972) The structure of aerial-feeding bat faunas as indicated by ears and wing elements. Can J Zool 50:287–296

    Google Scholar 

  • Fenton MB (1982) Echolocation calls and patterns of hunting and habitat use of bats (Microchiroptera) from Chillagoe, North Queensland. Aust J Zool 30:417–425

    Google Scholar 

  • Fenton MB (1986a) Design of bat echolocation calls: implications for foraging ecology and communication. Mammalia 50:193–203

    Google Scholar 

  • Fenton MB (1986b) Hipposideros caffer (Chiroptera: Hipposideridae) in Zimbabwe: morphology and echolocation calls. J Zool (London) A 210:347–353

    Google Scholar 

  • Fenton MB, Bell GP (1981) Recognition of species of insectivorous bats by their echolocation calls. J Mammal 62:233–243

    Google Scholar 

  • Fenton MB, Fullard JH (1979) The influence of moth hearing on bat echolocation strategies. J Comp Physiol 132:77–86

    Google Scholar 

  • Fullard JH (1987) Sensory ecology and neuroethology of moth and bats: interactions in a global perspective. In: Fenton MB, Racey P, Payner JMV (eds) Recent advances in the study of bats. Cambridge University Press, Cambridge, pp 244–272

    Google Scholar 

  • Gilpin ME, Diamond JM (1984) Are species co-occurences on islands non-random and are null-hypotheses useful in community ecology? In: Strong DR, Simberloff D, Abele LG, Thistle AB (eds) Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton NJ, pp 297–315

    Google Scholar 

  • Griffin DR, Galambos R (1940) Obstacle avoidance by flying bats. Anat Rec 78:95

    Google Scholar 

  • Gould E (1979) Neonatal vocalizations of ten species of Malaysian bats (Megachiroptera and Microchiroptera). Am Zool 19:481–491

    Google Scholar 

  • Habersetzer J (1986) Vergleichende flügelmorphologische Untersuchungen an einer Fledermausgesellschaft in Madurai. In: Nachtigall W (ed) Bat flight — Fledermausflug. BIONA-Report, 5, G. Fischer, Stuttgart New York, pp 75–104

    Google Scholar 

  • Heller KG, Volleth M (1989) Fledermäuse (Mammalia: Chiroptera) aus Malaysia. 1. Beobachtungen zur Biologie, Morphologie und Taxonomie. Senckenberg Biol (in press)

  • Hill JE (1963) A revision of the genus Hipposideros. Bull Br Mus nat Hist (Zool) 11:3–129

    Google Scholar 

  • Hill JE, Zubaid A, Davison GWH (1986) The taxonomy of leafnosed bats of the Hipposideros bicolor group (Chiroptera: Hipposideridae) from Southerastern Asia. Mammalia 50:535–540

    Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia, or why are there so many kinds of animals? Am Nat 93:145–159

    Google Scholar 

  • Jenkins PD, Hill JE (1981) The status of Hipposideros galeritus Cantor, 1846 and Hipposideros cervinus (Gould, 1854) (Chiroptera: Hipposideridae). Bull Br Mus nat Hist (Zool) 41:279–294

    Google Scholar 

  • Kay L, Pickvance TJ (1963) Ultrasonic emissions of the lesser horseshoe bat Rhinolophus hipposideros (Bech.) Proc Zool Soc, London 141:163–172

    Google Scholar 

  • Kingdon J (1974) East African mammals. Vol IIa. Academic Press, London New York, 1–341

    Google Scholar 

  • Konstantinov AJ, Sokolov BV (1968) Characteristics of ultrasonic orientation signals in horseshoe bats (Rhinolophidae). J Evol Biochem Physiol 5 (1969):90–97

    Google Scholar 

  • Latimer W, Broughton WB (1984) Acoustic interference in bush crickets: a factor in the evolution of singing insects? J Nat Hist 18:599–616

    Google Scholar 

  • Lawrence BD, Simmons JA (1982) Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. J Acoust Soc Am 71:585–590

    Google Scholar 

  • Leonard ML, Fenton MB (1984) Echolocation calls of Euderma maculatum (Vespertilionidae) use in orientation and communication. J Mammal 65:122–126

    Google Scholar 

  • Liegl A, Helversen O von (1987) Jagdgebiet eines Mausohrs (Myotis myotis) weitab von der Wochenstube. Myotis 25:71–76

    Google Scholar 

  • Medway Lord (1972) The Gunong Benom expedition 1967. 6. The distribution and altitudinal zonation of birds and mammals on Gunong Benom. Bull Br Mus nat Hist (Zool) 23:105–154

    Google Scholar 

  • Medway Lord (1983) The wild mammals of Malaya (peninsular Malaysia) and Singapore. 2nd edition with corrections. Oxford University Press, Kuala Lumpur, 1–134

    Google Scholar 

  • Medway Lord, Wells DR (1971) Diversity and density of birds and mammals at Kuala Lompat, Pahang. Malay Nat J 24:238–247

    Google Scholar 

  • Miller LA, Degn HJ (1981) The acoustic behavior of four species of vespertilionid bats studied in the field. J Comp Physiol 142:67–74

    Google Scholar 

  • Möhres FP (1951) Über eine neue Art von Ultraschall-Orientierung bei Fledermäusen. Verh Dtsch Zool Ges 1951:179–186

    Google Scholar 

  • Möhres FP (1960) Bildhören — eine neuentdeckte Sinnesleistung der Tiere. Umschau 1960:673–678

    Google Scholar 

  • Möhres FP (1967) Communicative characters of sonar signals in bats. In: Busnel RG (ed) Les systemes sonars animaux. Vol. 2. N.A.T.O. Advanced Study Institute, pp 939–945

  • Neuweiler G (1981) Sinnesadaptation am Beispiel echoortender Fledermäuse. Nova Acta Leopoldina N.F. 54:487–503

    Google Scholar 

  • Neuweiler G (1983) Echolocation and adaptivity to ecological constraints. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York Tokyo, pp 280–302

    Google Scholar 

  • Neuweiler G, Metzner W, Heilmann U, Rübsamen R, Eckrich M, Costa HH (1987) Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus rouxi) of Sri Lanka. Behav Ecol Sociobiol 20:53–67

    Google Scholar 

  • Novick A (1958) Orientation in palaeotropical bats. I. Microchiroptera. J Exp Biol 138:81–153

    Google Scholar 

  • Novick A (1977) Acoustic orientation. In: Wimsatt, WA (ed) Biology of bats, Vol. III. Academic Press, New York San Francisko London, pp 74–289

    Google Scholar 

  • Oksanen L (1987) Interspecific competition and the structure of bird guilds in boreal Europe: the importance of doing fieldwork in the right season. TREE 2:376–379

    Google Scholar 

  • Pierce GW, Griffin DR (1938) Experimental determination of supersonic notes emitted by bats. J Mammal 19:454–455

    Google Scholar 

  • Pye JD (1972) Bimodal distribution of constant frequencies in some hipposiderid bats (Mammalia: Hipposideridae). J Zool (London) 166:323–335

    Google Scholar 

  • Pye JD (1979) Why ultrasound? Endeavour N.S. 3:57–62

    Google Scholar 

  • Pye JD, Roberts LH (1970) Ear movements in a hipposiderid bat. Nature 225:285–286

    Google Scholar 

  • Roberts LH (1972) Variable resonance in constant frequency bats. J Zool (London) 166:337–348

    Google Scholar 

  • Roth VL (1981) Constancy in the size ratios of sympatric species. Am Nat 118:394–404

    Google Scholar 

  • Schnitzler HU (1968) Die Ultraschall-Ortungslaute der Hufeisen-Orientierungssituationen. Z Vergl Physiol 57:376–408

    Google Scholar 

  • Schnitzler HU (1978) Die Detektion von Bewegungen durch Echoortung bei Fledermäusen. Verh Dtsch Zool Ges 1978:16–33

    Google Scholar 

  • Schnitzler HU, Hackbarth H, Heilmann U, Herbert H (1985) Echolocation behavior of rufous horseshoe bats hunting fr insects in the flycatcher-style. J Comp Physiol A 157:39–46

    Google Scholar 

  • Schoener TW (1984) Size differences among sympatric, bird-eating hawks: a worldwide survey. In: Strong DR, Simberloff D, Abele LG, Thistle AB (eds) Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton NJ, pp 254–281

    Google Scholar 

  • Schuller G (1980) Hearing characteristics and dopple shift compensation in South Indian CF-FM bats. J Comp Physiol 139:349–356

    Google Scholar 

  • Simberloff D, Boecklen W (1981) Santa Rosalia reconsidered: size ratios and competition. Evolution 35:1206–1228

    Google Scholar 

  • Smithers RHN (1983) The mammals of the Southern African subregion. Angus & Robertson Publishers, London Sidney Melbourne, 1–530

    Google Scholar 

  • Taniguchi I (1985) Echolocation sounds and hearing in the Greater Japanese horseshoe bat (Rhinolophus ferrumequinum nippon). J comp Physiol A 156:185–188

    Google Scholar 

  • Tate GHH (1943) Results of the Archbold expeditions. No. 49 Further notes on the Rhinolophus philippinensis group (Chiroptera). Am Mus Nov 1219:1–5

    Google Scholar 

  • Tonkyn DW, Cole BJ (1986) The statistical analysis of size ratios. Am Nat 128:66–81

    Google Scholar 

  • Wallin L (1969) The Japanese bat fauna. Zool Bidrg 37:226–440

    Google Scholar 

  • Woodside DP, Taylor KJ (1985) Echolocation calls of fourteen bats from eastern New South Wales. Austr Mammal 8:279–297

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heller, KG., Helversen, O.v. Resource partitioning of sonar frequency bands in rhinolophoid bats. Oecologia 80, 178–186 (1989). https://doi.org/10.1007/BF00380148

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00380148

Key words

Navigation