Skip to main content
Log in

Life history patterns in birds and mammals and their evolutionary interpretation

  • Published:
Oecologia Aims and scope Submit manuscript

Summary

It is argued that allometric principles account for most of the observed variation in the life history patterns amongst birds. To test this contention it is shown that traits such as incubation time, growth rates, age at first reproduction, lifespan, clutch weight and egg weight all scale to body weight with exponents similar to those found for analogous traits in mammals. It is then shown that most of the variation amongst bird taxa and between birds and mammals based on body weight allometry can be explained by variations in brain size, body temperature and metabolic rate, consistent with theories of growth and ageing derived from mammalian studies. Finally, it is suggested that the evidence for life histostory allometry is sufficiently strong that it argues for a more epigenetic view of life history patterns and their evolution than is generally conceded in most adaptation theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amadon D (1943) Bird weight and egg weights. Auk 60:221–234

    Google Scholar 

  • Ar A, Rahn H (1980) Water in the avain egg: overall budget of incubation. Amer Zool 20:373–384

    Google Scholar 

  • Ar A, Yom-Tov Y (1978) The evolution of parental care in birds. Evolution 32:655–669

    Google Scholar 

  • Ashmole NP (1971) Seabird ecology and the marine environment. In DS Farner and JK King (eds). Avian Biology. Vol I Academic Press, New York

    Google Scholar 

  • Banse K, Mosher S (1980) Adult body mass and annual production/biomass relationships of field populations. Eco Monogr 50:355–379

    Google Scholar 

  • Bergatold WH (1917) The Incubation Period of Birds. Denver, Colorado, Kendrick-Bellamy Co

    Google Scholar 

  • Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, and Sams S (1978) Relationships between body size and some life history parameters. Oecologia 37:257–272

    Google Scholar 

  • Bonin G von (1937) Brain weight and body weight of mammals. J Gen Psychol 16:379–389

    Google Scholar 

  • Brody S, Bioenergetics and Growth. New York, Reinhold

  • Calow P (1978) Life cycles: an evolutionary approach to the physiology of growth, reproduction and ageing, Chapman and Hall, London

    Google Scholar 

  • Clutton-Brock TH, Harver PH (1979) Comparison and adaptation, Proc R Soc Lond B 205:547–565

    Google Scholar 

  • Clutton-Brock TH, Harver PH (1980) Primates, brains and ecology. J Zool Lond 190:309–323

    Google Scholar 

  • Cobb S (1960) Observations on the compartive anatomy of the avain brain. Perspectives In Biology And Medicine 3(3):383–408

    Google Scholar 

  • Cody ML (1966) A general theory of clutch size. Evol 20:174–184

    Google Scholar 

  • Cody ML (1969) Evolution of reproductive rates: a review. Science 163:1185–1187

    Google Scholar 

  • Cole LC (1954) The population consequences of life history phenomena. Quart Rev Biol 29:103–137

    Google Scholar 

  • Cramps S, Simon KEL (eds) (1977–1980) Handbook of the Birds of Europe, the Middleeast and North Africa. Vol I and II. Oxford, Oxford University Press

    Google Scholar 

  • Crile G, Quiring DP (1940) A record of the body weight and certain organ and gland weights of 3690 animals. The Ohio J Science 40:219–259

    Google Scholar 

  • Demment MW, van Soest PJ (In Press) Body size and herbivory. Afr J Ecol

  • Drent R (1973) The Natural history of incubation In: Breeding Biology of Birds. pp 262–320. Washington, DC National Academy of Sciences

    Google Scholar 

  • Drent R (1975) Incubation. pp 333–420. In DS Farner and King JR (Eds) Avian Biology Vol 5. Academic Press, New York

    Google Scholar 

  • Dubois E (1922) Phylogenetic and ontogenetic increase of the volume of the Brain in vertebrata. K Akad Wetensch Amsterdam. 25, 230

    Google Scholar 

  • Edney EB, Gill RW. Evolution of senescence and specific longevity. Nature 220:281–282

  • Eisenberg JS (1976) Phylogeny, behaviour and ecology in the Mammalia. In: Phylogeny of the Primates (Eds) WP Luckett and FS Szalany. Plenum Publ NY

    Google Scholar 

  • Eisenberg JS, Wilson DE (1981) Relative brain size and demographic strategies in didelphid marsupials. Am Nat 118:1–15

    Google Scholar 

  • Fenchel T (1974) Intrinsic rate of natural increase: the relationship with body size. Ecologia 14:317–326

    Google Scholar 

  • Fisher RA (1930) The Genetical Theory of Natural Selection. 2nd ed 1958. Dover, New York

    Google Scholar 

  • Gadgil M, Bossert WH (1970) Life history consequences of natural selection. Amer Nat 104:1–24

    Google Scholar 

  • Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev Cambridge. Phil Soc 41:587–640

    Google Scholar 

  • Gould SJ (1971) Geometric similarity in allometric growth: A contribution to the problem of scaling in the evolution of size. Amer Nat 105:113–136

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The Spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B20:581–598

    Google Scholar 

  • Gunther B, Guerra E (1955) Biological Similarities. Acta Phyiol Latino am 5:169–186

    Google Scholar 

  • Hamilton WD (1966) The moulding of senescence by natural selection. J Theor Biol 12:12–45

    Google Scholar 

  • Heinroth O (1922) Die Beziehungen Zwischen Vogelgewicht, Eigewicht, Gelegegewicht und Brotdauer, J Orhith 70:172–285

    Google Scholar 

  • Hill AV (1950) The dimensions of animals and their muscular dynamics. Sci Prog London 38:209–230

    Google Scholar 

  • Hoffman GW (1974) On the origin of the genetic code and the stability of the translation apparatus. J Molec Biol 86:349–362

    Google Scholar 

  • Hopfield JJ (1974) Kinetic proof reading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Pro Nat Acad Sci USA 71:4135–4139

    Google Scholar 

  • Hurxthal LM (1979) Breeding behaviour of the Ostrich Struthio camelus massaiicus Neuman in Nairobi Park. Ph D thesis University of Nairobi

  • Huxley JS (1924–29) On the relation between egg weight and body weight in birds. J Linn Soc (Zool) 36:457

    Google Scholar 

  • Istock CA (1967) The evolution of complex life cycle phenomena: an ecological perspective. Evolution 21:592–605

    Google Scholar 

  • Jerison JH (1970) Gross brain indices and analysis of fossil endocasts. Pages 225–244. In CR Noback and Montagna (eds). Advances in Primatology. Vol I Appleton-Century-Crofts, New York

    Google Scholar 

  • Jerison JH (1973) Evolution of the Brain and Intelligence. Academic Press, New York

    Google Scholar 

  • Kihlstrom JE (1972) Period of gestation and body weight in some placental mammals. Comp Biochem Physiol, 43A, 673–680

    Google Scholar 

  • King JR, Farner DS (1961) Energy metabolism thermoregulation and body temperature. In Marshall AJ (ed). Biology and comparative Physiology of Birds. Academic Press, New York

    Google Scholar 

  • Kirkwood TBL (1977) Evolution of ageing. Nature 270:301–304

    Google Scholar 

  • Kirkwood TBL, Holliday R (1979) The evolution of ageing. Proc R Soc Lond B 205:531–546

    Google Scholar 

  • Kleiber M (1961) The Fire of Life. New York, Wiley

    Google Scholar 

  • Kleinbaum DG, Kupper LL (1977) Applied Regression Analysis and other Multivariable Methods. North Scituate. Mass Duxbury Press

    Google Scholar 

  • Klomp H (1970) The determination of clutch size in birds: a review. Ardea 58:1–124

    Google Scholar 

  • Lack D (1947–1948) Significance of clutch size I–III Ibis 89:302–352, 90:25–45

    Google Scholar 

  • Lack D (1954) The natural regulation of animal numbers. Clanderson, Oxford

    Google Scholar 

  • Lack D (1966) Population studies on birds. Clanderson, Oxford

    Google Scholar 

  • Lack D (1968) Ecological adaptations for breeding birds. Methuen, London

    Google Scholar 

  • Lande R (1979) Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33:402–416

    Google Scholar 

  • Lapique L (1922) Le poids du cerveau et l'intelligence: Chapter II. In: A Dumas (Ed) Traite de Psychologie. Paris, Alcan

    Google Scholar 

  • Lasiewski RC, Dawson WR (1967) A re-examination of the relation between standard metabolic rate and body weight in birds. Condor 69:13–23

    Google Scholar 

  • Leitch I, Hytten FE, Billewicz WZ (1959) The material and neonatal weights of some mammals. Proc Zool Soc Lond 133:11–28

    Google Scholar 

  • Leutenegger W (1976) Allometry of neonatal size in eutherian mammals. Nature 263:229–230

    Google Scholar 

  • Lindstedt SL, Calder WA (1976) Bodysize and longevity in birds Condor 78:91–145

    Google Scholar 

  • Lindstedt SL, Calder WA (1981) Body size, physiological time and longevity of homeothermic animals. Quart Rev Biol 56:1–161

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography. Princeton Univ Press, Princeton

    Google Scholar 

  • McMahon T (1973) Size and Shape in biology. Science 179:1201–1204

    Google Scholar 

  • McNab BK (1980) Food habits, energetics, and the population biology of mammals. Am Nat 116:106–124

    Google Scholar 

  • Medawar PB (1952) An Unsolved Problem in Biology. Lewis, London

    Google Scholar 

  • Millar JS (1977) Adaptive features of mammalian reproduction. Evolution 31:370–386

    Google Scholar 

  • Needham J (1931) Chemical embryology. Vol I. Cambridge Univ Press

  • Newton I (1979) Population Ecology of Raptors. Buteo Books, Vermillion, South Dakota

    Google Scholar 

  • Ninio J (1975) Kinetic amplification of enzyme discrimination. Biochmie 57:587–595

    Google Scholar 

  • Orgel LE (1973) Ageing of clones of mammalian cells. Nature Lond 243:441–445

    Google Scholar 

  • Owen DF (1977) Latitudinal gradients in clutch size: an extension of David Lack's theory. In Stonehouse B, and Perrins C (eds). Evolutionary Ecology. Macmillan Press, London

    Google Scholar 

  • Pearl R (1922) The Biology of Death. JP Lippincott, Philadelphia

    Google Scholar 

  • Pearson R (1972) The Avian Brain. Academic Press, London and New York

    Google Scholar 

  • Pianka ER (1972) r and K selection or b and d selection. Am Nat 106:581–588

    Google Scholar 

  • Pianka ER (1974) Evolutionary Ecology. Harper and Rowe, N.Y.

    Google Scholar 

  • Portman A (1946–1947) Etudes sur la cerebralisation chez les oiseaux. I, II. Alauda 15:1–15

    Google Scholar 

  • Rahn H, Pagnelli CV, Ar A (1975) Relation of avian egg weight to body weight. Auk 92:750–65

    Google Scholar 

  • Rahn H, Pagnelli CV, Ar A (1974) The Avian egg: Incubation time and water loss. Condor 76:147–152

    Google Scholar 

  • Ricklefs RE (1968) Patterns of growth in birds. Ibis 110:419–451

    Google Scholar 

  • Ricklefs RE (1973) Patterns of growth in birds II: growth rates and mode of development. Ibis: 115:177–201

    Google Scholar 

  • Ricklefs RE (1976) Growth rates of birds in the humid New World tropics. Ibs 118:179–297

    Google Scholar 

  • Ricklefs RE (1977(a)) On the evolution of reproductive strategies in birds: reproductive effort. Am Nat 111:453–478

    Google Scholar 

  • Ricklefs RE (1977(b)) A note on the evolution of clutch size in altricial birds. In Stonehouse B and Perrins C (eds). Evolutionary Ecology. Macmillan Press

  • Ricklefs RE (1979) Adaptation, constraint, and compromise in Avian Post ntal development. Biol Rev 54:269–290

    Google Scholar 

  • Rubner M (1908) Das Problem der Lebensdauer und seine Beziehungen zum Wachstum und Ernährung. Oldenbourg, Munich

    Google Scholar 

  • Sacher GA (1959) Relation of lifespan to brain weight and body weight in mammals. In: CIBA Foundation Colloquia on Ageing. Vol 5. The Life Span of Animals (Churchill, London)

    Google Scholar 

  • Sacher GA (1978) Longevity and ageing in vertebrate evolution. BioScience 28:497–501

    Google Scholar 

  • Sacher GA, Staffeldt EG (1974) Relation of Gestation time to brain weight for Placental mammals: Implications for the theory of vertebrate Growth: Am Nat 108:593–615

    Google Scholar 

  • Schmidt-Nielsen K (1977) Problems of Scaling: locomotion and physiological correlates. In: Pedley TJ (ed) Scale Effects in Animal Locomotion pp 1–22. Academic Press, London

    Google Scholar 

  • Schonwetter M (1960–1972) Handbuch der Oologie Lief 1–9: W Meise (ed) Berlin Akademic Verlag

  • Skutch AF (1967) Adaptive limitation of reproductive rates of birds. Ibis 109:579–599

    Google Scholar 

  • Snell O (1891) Das Gewicht des Gehirns und des Hirnmantels der Säugetiere in Beziehung zu deren geistigen Fähigkeiten Sitzungber Gesellschaft Morphol Physiol München 7:90–94 (Quoted by Gould SJ 1979)

    Google Scholar 

  • Southwood TRE (1976) Bionomic Strategies and Population parameters. In: Theoretical Ecology, May RM Ed. Blackwell, Oxford

    Google Scholar 

  • Spoon WL (1888) The relative weight of the brain to the body in birds. Amer Nat 22:537–540

    Google Scholar 

  • Stahl WR (1962) Similarity and dimensional methods in biology. Science 137:205–212

    Google Scholar 

  • Stearns SC (1976) Life-history tactics: a review of ideas. Quart Rev Biol 51:3–47

    Google Scholar 

  • Stearns SC (1977) The evolution of life history traits. Ann Rev of Ecol and Syst 8:145–171

    Google Scholar 

  • Sterns SC (1980) A new view of life history evolution. Oikos 35:266–281

    Google Scholar 

  • Stettner LJ, Matyniak KA (1968) The brain of birds. Sci Amer 218:64–76

    Google Scholar 

  • Taylor StCS (1965) A relation between mature weight and time taken to mature in mammals. Anim Prod 7:203–220

    Google Scholar 

  • Taylor StCS (1968) Time taken to mature in relation to mature weight for sexes strains and species of domesticated mammals and birds. Anim Prod 10:157–169

    Google Scholar 

  • Western D (1979) Size, life history and ecology in mammals Afr J Ecol 17:185–204

    Google Scholar 

  • Western D (1980) Linking the ecology of past and presently mammal communities. In: Behrensmeyer AK and Hill PH (eds). Fossils in the Making: Vertebrate Taphonomy and Paleoecology. University of Chicago Press, Chicago

    Google Scholar 

  • Western D (In Press) Production, reproduction and size in mammals. Afr J Ecol

  • Weinbach AP (1941) The human growth curve. I Prenatal growth. Growth 5:217–233

    Google Scholar 

  • Weisman A (1891) In Weisman on heredity. Poulton EB, Schonland S and Shipley AE (eds). 2nd Ed Oxford University Press

  • Williams GC (1957) Pleiotropy, natural selection and the evolution of Senescence. Evolution 11:398–411

    Google Scholar 

  • Williams GC (1966) Natural Selection, the costs of reproduction, and a refinement of Lack's principle. Amer Nat 100:687–690

    Google Scholar 

  • Wilson EO (1975) Sociobiology: The New Synthesis. Belknap Press, Cambridge, Mass

    Google Scholar 

  • Witherby HF, Jurdan FCR, Ticehurst NF, Turker BW (1938–1941) The Handbook of British Birds. (5 vols). HF & G Witherby, London

    Google Scholar 

  • Zar JH (1968) Calculation and miscalculation of the allometric equation as a model in biological data. BioScience 18:1118–1120

    Google Scholar 

  • Zar JH (1969) The use of the allometric model fo avian standard metabolism-body weight relationships. Comp Biochem Physiol 29:227–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Western, D., Ssemakula, J. Life history patterns in birds and mammals and their evolutionary interpretation. Oecologia 54, 281–290 (1982). https://doi.org/10.1007/BF00379994

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379994

Keywords

Navigation