Skip to main content
Log in

Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We investigate the relaxation problem for the hydrodynamic isentropic Euler-Poisson system when the momentum relaxation time tends to zero. Very sharp estimates on the solutions, independent of the relaxation time, are obtained and used to establish compactness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. M. Ascher, P. A. Markowich, P. Pietra & C. Schmeiser, A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model, Math. Mod. Math. Appl. Sci., 1 (1991) 347–376.

    Google Scholar 

  2. A. M. Anile & S. Pennisi, Extended thermodynamics of the Blotekjear hydrodynamical model for semiconductors, Continuum Mech. Therm., 4 (1992), 187–193.

    Google Scholar 

  3. A. M. Anile & S. Pennisi, Thermodynamics derivation of the hydrodynamical model for charge transport in semiconductors, Physical Rev. B: Condensed Matter, 46 (1992), 13186–13193.

    Google Scholar 

  4. G. Baccarani & M. R. Worderman, An investigation of steady-state velocity overshoot effects in Si and GaAs devices, Solid State Electr., 28 (1985), 407–416.

    Google Scholar 

  5. G.-Q. Chen & T.-P. Liu, Zero relaxation and dissipation limits for hyperbolic conservation laws, Comm. Pure Appl. Math., 46 (1993), 755–781.

    Google Scholar 

  6. G.-Q. Chen, C. Levermore & T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 47 (1994), 787–830.

    Google Scholar 

  7. C. M. Dafermos & L. Hsiao, Hyperbolic systems of balance law with inhomogeneity and dissipation, Indiana Univ. Math. J., 31 (1982), 471–491.

    Google Scholar 

  8. X. Ding, G.-Q. Chen & P. Luo, Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (I), (II), Acta Math. Sci., 5 (1985), 483–500, 501–540.

    Google Scholar 

  9. X. Ding, G.-Q. Chen & P. Luo, Convergence of the fractional step Lax-Friedrichs scheme and Godounov scheme for isentropic gas dynamics, Comm. Math. Phys., 121 (1989), 63–84.

    Google Scholar 

  10. R. DiPerna, Convergence of approximate solutions of conservation laws, Arch. Rational Mech. Anal., 82 (1983), 27–70.

    Google Scholar 

  11. R. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys., 91 (1983), 1–30.

    Google Scholar 

  12. I. M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Comm. Partial Diff. Eqs., 17 (1992), 553–577.

    Google Scholar 

  13. S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equation of hydrodynamics, Math. Sb., 47 (1959), 271–306.

    Google Scholar 

  14. F. Jochmann, Global weak solutions of the one-dimensional hydrodynamic model for semiconductors, Math. Mod. Meth. Appl. Sci., 3 (1993) 759–788.

    Google Scholar 

  15. P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. Pure Appl. Math., 7 (1954), 159–193.

    Google Scholar 

  16. J. L. Lions, Perturbations singulières dans les problèmes aux limites et en controle optimale, in Lectures Notes in Math., 323, Springer-Verlag, Berlin (1984).

  17. P. A. Marcati & A. Milani, The one-dimensional Darcy's law as the limit of a compressible Euler flow, J. Diff. Eq., 84 (1990), 129–147.

    Google Scholar 

  18. P. A. Marcati, A. J. Milani & P. Secchi, Singular convergence of weak solutions for a quasilinear nonhomogeneous hyperbolic system, Manuscripta Math., 60 (1988), 49–69.

    Google Scholar 

  19. P. A. Marcati & R. Natalini, Weak solutions to a hydrodynamical model for semiconductors: the Cauchy problem, to appear in Proc. Roy. Soc. Edinburgh.

  20. P. A. Markowich & P. Pietra, A non-isentropic Euler-Poisson model for a collisionless plasma, Math. Meth. Appl. Sci. 16 (1993), 409–442.

    Google Scholar 

  21. P. A. Markowich, C. Ringhofer, C. Schmeiser, Semiconductor Equations, Springer-Verlag, Wien, New York (1990).

    Google Scholar 

  22. F. Odeh & M. Rudan, Multi-dimensional discretization scheme for the hydrodynamic model of semiconductors devices, Compel, 5 (1986) 149–183.

    Google Scholar 

  23. F. Poupaud, Derivation of a hydrodynamic system hierarchy from the Boltzmann equation, Appl. Math. Letters, 4 (1992), 75–79.

    Google Scholar 

  24. F. Poupaud, M. Rascle & J. P. Vila, Global solutions to the isothermal Euler-Poisson system with arbitrary large data, to appear in J. Diff. Eqs.

  25. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York (1983).

    Google Scholar 

  26. L. Tartar, Compensated compactness and applications to partial differential equations, Research notes in Mathematics, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 4, ed. R. J. Knops, New York, Pitman Press (1979), 136–212.

    Google Scholar 

  27. W. V. Van Roosbroeck, Theory of flow of electrons and holes in germanium and other semiconductors, Bell Syst. Techn. J., 29 (1950), 560–607.

    Google Scholar 

  28. Bo Zhang, Convergence of the Godunov scheme for a simplified one dimensional hydordynamic model for semiconductor devices, Comm. Math. Phys., 157 (1992), 1–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Commuicated by T.-P. Liu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcati, P., Natalini, R. Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation. Arch. Rational Mech. Anal. 129, 129–145 (1995). https://doi.org/10.1007/BF00379918

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379918

Keywords

Navigation