Skip to main content

Life cycle of lithobiidae — with a discussion of the r-and K-selection theory

Summary

The life cycle of two lithobiid species (Chilopoda: Lithobiidae) Lithobius mutabilis L. Koch and L. curtipes C.L. Koch in an old beech stand in the Solling is described. In addition to a main egg-laying period lithobiids are able to lay eggs continuously throughout the year. The reproductive potential is small, as only one egg is laid over several days. Most juveniles hatch in the spring and over-winter as L3 or L4 larvae. Epimorph development to attainment of sexual maturity takes nearly 2 years. Adult L. mutablilis live a further 2 years or more, adult L. curtipes about 1 year or more. Total life span is about 5–6 years for L. mutabilis and 4–5 years for L. curtipes. Egg development times and instar durations can be very different for different animals. Mortality is relatively high for eggs and small juveniles and low for post larval instars except the very old animals. A method is presented for construction of a survivorship curve from monthly abundance figures. Due to their slow development, late attainment of reproductive period, long reproductive phase, low reproductive potential, long life span, low mortality of post larval instars except very old animals, lithobiids can be regarded as K-strategists or, better, equilibrium species, among the arthropods. It is argued that the theory of r- and K-selection in its general use is not sufficient for a description of the ecological strategies of animals such as Lithobiomorpha. For lithobiids, variability in development time is a very important means of keeping population size at a constant level. The life cycle of the two lithobiid species is compared with ahat of Geophilomorpha and one henicopid species also occurring in the Solling.

This is a preview of subscription content, access via your institution.

References

  • Albert AM (1977) Biomasse von Chilopoden in einem Buchenaltbestand des Solling. Verh Ges Ökologie, Göttingen 1976:93–101

    Google Scholar 

  • Albert AM (1979) Chilopoda as part of the predatory macroarthropod fauna in forests: abundance, biomass, and metabolism. In: M Camatini (ed), Myriapod biology, Academic Press, New York-London p 215–231

    Google Scholar 

  • Albert AM (1982a) Species spectrum and dispersion patterns of chilopods in 3 Solling habitats. Pedobiologia 23:335–345

    Google Scholar 

  • Albert AM (1982b) Deviations from Dyar's Rule in Lithobiidae. Zool Anz Jena 208:192–207

    Google Scholar 

  • Albert AM (1983) Estimation of oxygen consumption of lithobiid field populations from laboratory measurements. Oecologia (Berlin) 56:280–291

    Google Scholar 

  • Albert AM (1983) Energy budgets for populations of long-lived arthropod predators (Chilopoda: Lithobiidae) in an old beech forest. Oecologia (Berlin) 56:292–305

    Google Scholar 

  • Albert R (1981) Untersuchungen zur Struktur und Dynamik von Spinnengesellschaften verschiedener Vegetationstypen im Hochsolling. Dissertation University Bremen

  • Andersson G (1976) Post-embryonic development of Lithobius forficatus (L.) (Chilopoda: Lithobiidae). Ent scand 7:161–168

    Google Scholar 

  • Andersson G (1978a) An investigation of the postembryonic development of the Lithobiidae — some introductory aspects. Abh Verh naturw Ver Hamburg (NF) 21/22:63–71

    Google Scholar 

  • Andersson G (1978b) Post-embryonic development of Lithobius erythrocephalus C.L. Koch (Chilopoda: Lithobiidae). Ent scand 9:241–246

    Google Scholar 

  • Andersson G (1979) On the use of larval characters in the classification of lithobiomorph centipedes (Chilopoda, Lithobiomorpha). In: M Camatini (ed), Myriapod biology, Academic Press, New York-London p 73–81

    Google Scholar 

  • Andersson G (1980a) Lithobius borealis Meinert and L. lapidicola Meinert in Sweden (Chilopoda: Lithobiidae). Ent scand 11:45–48

    Google Scholar 

  • Andersson G (1980b) Post-embryonic development of Lithobius melanops Newport (Chilopoda: Lithobiidae). Ent scand 11:225–230

    Google Scholar 

  • Attems K (1930) Chilopoda. In: Kükenthal W (ed) Handbuch der Zoologie, Berlin-Leipzig p 239–402

  • Barbosa P (1977) r- and K-strategies in some larval and pupal parasitoids of the gypsy moth. Oecologia (Berl) 29:311–327

    Google Scholar 

  • Biegel JH (1922) Beiträge zur Morphologie und Entwieklungsgeschichte des Herzens bei Lithobius forficatus L. Rev Suisse Zool 29:427–483

    Google Scholar 

  • Brocher F (1930) Observations biologiques sur la ponte et les premiers stades du Lithobius forficatus L. Rev Suisse Zool 37:375–383

    Google Scholar 

  • Deevey ES Jr (1947) Life tables for natural populations of animals. Quart Rev Biol 22:283–314

    Google Scholar 

  • Eason EH(1964) Centipedes of the British Isles. F Warne and Co, London

    Google Scholar 

  • Füller H (1969) Klasse Chilopoda — Hundertfüßler. In: Urania Tierreich, Wirbellose Tiere 2, Jena-Berlin p 420–435

  • Haldane JBS (1949) Disease and evolution. Symposium sui fattori ecologici e genetici della speciazone negli animali. Ricerca Scientifica 19 (Suppl) p 3–11

    Google Scholar 

  • Joly R (1977) Influence de quelques facteurs externes sur l'activité sécrétoire des glandes cérébrales chez Lithobius forficatus L. (Myriapode Chilopode). Gen Comp Endocrinol 32:167–178

    Google Scholar 

  • Joly R, Descamps M (1969) Evolution du testicule, des vésiculess seminals et cycle spermatogénétique chez Lithobius forficatus L. (Myriapode Chilopode). Arch Zool exp gen 110:341–348

    Google Scholar 

  • Kempson D, Lloyd M, Ghelardi R (1963) A new extractor for woodland litter. Pedobiologia 3:1–21

    Google Scholar 

  • Krebs CJ (1972) Ecology. Harper and Row. New York

    Google Scholar 

  • Lewis JGE (1961) The life history and ecology of the littoral centipede Strigamia (Scolioplanes) maritima (Leach). Proc zool Soc Lond 137:221–248

    Google Scholar 

  • Lewis JGE (1965) The food and reproductive cycles of the centipedes Lithobius variegatus and Lithobius forficatus in a York-shire woodland. Proc zool Soc Lond 144:269–283

    Google Scholar 

  • MacArthur RH (1962) Some generalized theorems of natural selection. Nat Acad Sci, Proc 48:1893–1897

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton Univ Press, Princeton

    Google Scholar 

  • Miller CA (1963) The spruce budworm. Mem Entomol Soc Canada 31:12–19

    Google Scholar 

  • Palmen E, Rantala M (1954) On the life history and ecology of Pachymerium ferrugineum (C.L. Koch) (Chilopoda, Geophilidae). Arch Soc zool bot fenn Vanamo 16:1–44

    Google Scholar 

  • Parry GD (1981) The meanings of r- and K-selection. Oecologia (Berl) 48:260–264

    Google Scholar 

  • Pearl R (1928) The rate of living. Knopf, New York

    Google Scholar 

  • Pearl R, Miner JR (1935) Experimental studies on the duration of life. XIV. The comparatative mortality of certain lower organisms. Quart Rev Biol 10:60–79

    Google Scholar 

  • Pianka ER (1970) On r- and K-selection. Amer Natur 104:592–597

    Google Scholar 

  • Remmert H (1978) Ökologie. Berlin-Heidelberg-New York: Springer 1978

    Google Scholar 

  • Rilling G (1968) Lithobius forficatus. Großes zoologisches Praktikum, Heft 13b. Fischer, Stuttgart

    Google Scholar 

  • Roberts H (1957) An ecological study of the arthropods of a mixed woodland with particular reference to the Lithobiidae. Ph D thesis Southampton

  • Siler W (1979) A competitive-risk model for animal mortality. Ecology 60:750–757

    Google Scholar 

  • Slobodkin LB (1962) Predation and efficiency in laboratory populations. Brit Ecol Soc Symp 2:223–242

    Google Scholar 

  • Southwood TRE (1976) Bionomic strategies and population parameters. In: RM May (ed), Theoretical ecology, Blackwell, Oxford p 26–48

    Google Scholar 

  • Southwood TRE, May RM, Hassell MP, Conway GR (1974) Ecological strategies and population parameters. Amer Natur 108:791–804

    Google Scholar 

  • Spinage CA (1972) African ungulate life tables. Ecology 53:645–652

    Google Scholar 

  • Stearns SC (1976) Life-history tactics: A review of the ideas. Quart Rev Biol 51:3–47

    Google Scholar 

  • Stern K, Tigerstedt PMA (1974) Ökologische Genetik. Stuttgart: Fischer

    Google Scholar 

  • Varley GC, Gradwell GR (1960) Key factors in population studies. J Anim Ecol 29:399–401

    Google Scholar 

  • Varley GC, Gradwell GR, Hassell MP (1973) Insect population ecology. Blackwell, Oxford

    Google Scholar 

  • Verhoeff KW (1905) Über die Entwicklungsstufen der Lithobiiden und Beiträge zur Kenntnis der Chilopoden. Zool Jb Suppl 8, Jena p 195–298

    Google Scholar 

  • Verhoeff KW (1925) Chilopoda. In: Bronn's Tierreich 5

  • Weidemann G (1971) Food and energy turnover of predatory arthropods of the soil surface. Ecol Stud 2:110–118

    Google Scholar 

  • Wignarajah S, Phillipson J (1977) Numbers and biomass of centipedes (Lithobiomorpha: Chilopoda) in a Betula-Alnus wood-land in N.E. England. Oecologia (Berl) 31:55–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Solling-Project of the Deutsche Forschungsgemeinschaft, contribution No. 315

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Albert, A.M. Life cycle of lithobiidae — with a discussion of the r-and K-selection theory. Oecologia 56, 272–279 (1983). https://doi.org/10.1007/BF00379701

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379701

Keywords

  • Life Cycle
  • Life Span
  • Sexual Maturity
  • Reproductive Potential
  • Reproductive Period