Oecologia

, Volume 13, Issue 1, pp 1–54 | Cite as

Behavioral implications of mechanistic ecology

Thermal and behavioral modeling of desert ectotherms and their microenvironment
  • W. P. Porter
  • J. W. Mitchell
  • W. A. Beckman
  • C. B. DeWitt
Article

Summary

Mechanistic principles from engineering, meteorology, and soil physics are integrated with ecology and physiology to develop models for prediction of animal behavior. The Mojave Desert biome and the desert iguana are used to illustrate these principles.

A transient energy balance model for animals in an outdoor environment is presented. The concepts and relationships have been tested in a wind tunnel, in a simulated desert, and in the field. The animal model requires anatomical information and knowledge of the thermoregulatory responses of the animal. The micrometeorological model requires only basic meteorological parameters and two soil physical properties as inputs. Tests of the model in the field show agreement between predicted and measured temperatures above and below the surface of about 2 to 3°C.

The animal and micrometeorological models are combined to predict daily and seasonal activity patterns, available times for predator-prey interaction, and daily, seasonal and annual requirements for food and water. It is shown that food, water and the thermal environment can limit animal activity, and furthermore, the controlling limit changes with season. Actual observations of activity patterns and our predictions show close agreement, in many cases, and pose intriguing questions in those situations where agreement does not exist. This type of modeling can be used to further study predator-prey interactions, to study how changes in the environment might affect animal behavior, and to answer other important ecological and physiological questions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, C. E., Whitford, W. G.: Energy requirements of Uta stansburiana. Copeia 4, 678–682 (1968).Google Scholar
  2. Bartholomew, G. A., Tucker, V. A.: Control of changes in body temperature, metabolism and circulation by the Agamid Lizard, Amphibolorus barbatus. Physiol. Zool. 36 (3), 199–218 (1963).Google Scholar
  3. Bartlett, P. N., Gates, D. M.: The energy budget of a lizard on a tree trunk. Ecology 48, 315–322 (1967).Google Scholar
  4. Beckman, W. A., Mitchell, J. W., Porter, W. P.: Thermal model for prediction of a desert iguana's daily and seasonal behavior. Trans. ASME, Series C 95, 257–262 (1973).Google Scholar
  5. Birkebak, R. C.: Heat transfer in biological systems. Intern. Rev. General and Expt. Zool. 2, 269–344 (1966).Google Scholar
  6. Brattstrom, B.: Personal communication (1972).Google Scholar
  7. Carslaw, H. S., Jaeger, J. C.: Conduction of heat in solids, p. 82. London: Oxford Univ. Press 1959.Google Scholar
  8. Chato, J. C.: A survey of thermal conductivity and diffusivity data on biological materials. A.S.M.E. 66-WA/HT-37 (1966).Google Scholar
  9. Cloudsley-Thompson, J. J.: Rhythmic activity, temperature tolerance, water relations and mechanism of heat death in a tropical skink and gecko. J. Zool. 146, 55–69 (1965).Google Scholar
  10. Cowles, R. B., Bogert, C. M.: A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist. 83, 265–296 (1944).Google Scholar
  11. Crosbie, R. J., Hardy, J. D., Fessenden, E.: Electrical analog simulation of temperature regulation in man. IRE Trans. 8, 245 (1961).Google Scholar
  12. Dawson, W. R., Bartholomew, G. A.: Metabolic and cardiac responses to temperature in the lizard, Dipsosaurus dorsalis. Physiol. Zool. 31, 100–111 (1958).Google Scholar
  13. DeWitt, C. B.: Precision of thermoregulation and its relation to environmental factors in the desert iguana, Dipsosaurus dorsalis. Physiol. Zool. 40, 49–66 (1967).Google Scholar
  14. Edney, E. B.: Temperature relations of arthropods. Biol. Rev. 29, 185–219 (1954).Google Scholar
  15. Geiger, R.: The climate near the ground. Cambridge, Mass. Harvard University Press 1965.Google Scholar
  16. Griffiths, A. J., Holling, C. S.: A competition submodel for parasites and predators. Can. Entomol. 101 (8), 785–818 (1969).Google Scholar
  17. Heath, J. E.: Reptilian thermoregulation: evaluations of field studies. Science 146 (3645), 784–785 (1964).PubMedGoogle Scholar
  18. Holman, J. P.: Heat transfer. London-New York: McGraw-Hill Book 1968.Google Scholar
  19. Holling, C. S.: The functional response of predators to prey density and its role in population regulation. Mem. Ent. Soc. Can. 45, 1–60 (1965).Google Scholar
  20. Johnson, O. H., Bryant, M. D., Miller, A. H.: Vertebrate animals of the Providence Mountains area of California. v. Calif. Zool. 48 (5), 221–376 (1948).Google Scholar
  21. Kavanau, J. L., Norris, K. S.: Behavior studies by capacitance sensing. Science 134 (3481), 730–732 (1961).PubMedGoogle Scholar
  22. Kendeigh, L. C.: The relation of metabolism to development of temperature regulations in birds. J. exp. Zool. 82, 419–438 (1939).Google Scholar
  23. Kluger, M., Heath, J. E.: The effect of posterior hypothalamic lesions on thermoregulation in the lizard, Dipsosaurus dorsalis. Physiol. Zool. (in press, 1973).Google Scholar
  24. Lasiewski, R. C.: Oxygen consumption of torpid, resting, active and flying hummingbirds. Physiol. Zool. 36, 122–140 (1963).Google Scholar
  25. Lee, D. H. K., Robinson, K., Hines, H. J. G.: Reactions of the rabbit to hot atmospheres. Proc. Roy. Soc. Queensland 8 (8), 129–144 (1941).Google Scholar
  26. London, A. L., Nottage, H. B., Boelter, L. M. K.: Determination of unit conductances of heat and mass transfer by the transient method. Ind. and Eng. Chem. 33, 467 (1941).Google Scholar
  27. Mayhew, W. W.: Photoperiodic responses in three species of the lizard genus Uma. Pan-Pacific Entomologist 40 (2), 95–113 (1964).Google Scholar
  28. Mayhew, W. W.: Reproduction in the sand-dwelling lizard, Uma inornata. Herpetologica 21 (1), 39–55 (1965).Google Scholar
  29. Mayhew, W. W.: Personal communication (1971).Google Scholar
  30. McCullough, E. M., Porter, W. P.: Computing clear day solar radiation spectra for the terrestrial ecological environment. Ecology 52 (6), 1008–1015 (1971).Google Scholar
  31. McGinnis, S. M., Dickson, L. L.: Thermoregulation in the desert iguana, Dipsosaurus dorsalis. Science 156, 1757 (1967).PubMedGoogle Scholar
  32. McNab, B. K., Morrison, P.: Body temperatures and metabolism in subspecies of Peromyscus from Arid and Mesic environments. Ecol. Monographs 33, 63–82 (1963).Google Scholar
  33. Minnich, J. E.: Evaporative water loss from the desert iguana, Dipsosaurus dorsalis. Copeia 3, 575–578 (1970a).Google Scholar
  34. Minnich, J. E.: Water and electrolyte balance of the desert iguana, Dipsosaurus dorsalis, in its natural habitat. Comp. Biochem. Physiol. 35, 921–933 (1970b).Google Scholar
  35. Minnich, J. E., Shoemaker, V. H.: Diet, behavior and water turnover in the desert iguana, Dipsosaurus dorsalis. Amer. Mid. Nat. 84 (2), 496–509 (1970).Google Scholar
  36. Moberly, W. R.: Hibernation in the desert iguana, Dipsosaurus dorsalis. Physiol. Zool. 36, 152–160 (1962).Google Scholar
  37. Nagy, K. A.: Seasonal metabolism of water, energy and electrolytes in a field population of desert lizards, Sauromalus obesus. Ph. D. Thesis, UCR (1971).Google Scholar
  38. Norris, K. S.: The ecology of the desert iguana, Dipsosaurus dorsalis. Ecology 34 (2), 265–287 (1953).Google Scholar
  39. Norris, K. S.: Color adaptation in desert reptiles and its thermal relationships. Symposium on Lizard Ecology, p. 162–229. Columbia, Mo.: U. Missouri Press 1967.Google Scholar
  40. Pearman, G. I., Weaver, H. L., Tanner, C. B.: Boundary layer heat transport coefficients under field conditions. Ag. Meteor. Vol. 10, No. 1–2, 83–92 (1972).Google Scholar
  41. Porter, W. P.: Solar radiation through the living body walls of vertebrates with emphasis on desert reptiles. Ecol. Mono. 37, 273–296 (1967).Google Scholar
  42. Porter, W. P., Gates, D. M.: Thermodynamic equilibria of animals with environment. Ecological Monographs 39, 245–270 (1969)Google Scholar
  43. Prosser, C. L., Brown, F. A., Jr.: Comparative animal physiology, 2nd ed., p. 688. Philadelphia: Saunders 1962.Google Scholar
  44. Regal, P., J.: Voluntary hypothermia in reptiles, Science 155, 1551–1553 (1967).PubMedGoogle Scholar
  45. Schmidt-Nielsen, K., Dawson, T. J., Hammel, H. T., Hinds, O., Jackson, O. C.: The jackrabbit — a study in its desert survival. Hvalradets Skrifter No. 48, 125–142 (1965).Google Scholar
  46. Scholander, P. F., Hock, R., Walters, V., Johnson, F., Bruibs, L.: Heat regulation in some arctic and tropical mammals and birds. Biol. Bull. Woods Hole 99, 237–258 (1950).Google Scholar
  47. Sellers, W. D.: Physical climatology. Chicago: Univ. Chicago Press 1965.Google Scholar
  48. Stearns, C. R.: Micrometeorological studies on the coastal desert of Peru. Ph. D. Thesis, University of Wisconsin, Madison, Wisconsin (1967).Google Scholar
  49. Stewart, D. W., Lemon, E. R.: The energy budget at the earth's surface. Interior Report 69-3, U.S. Dept. of Agriculture and Cornell University (1969).Google Scholar
  50. Stolwijk, J.: A mathematical model of physiological temperature regulation in man, NASA Rept. CR-1855 (1971).Google Scholar
  51. Swinbank, W. C.: Long-wave radiation from clear skies. Quart. J. Roy. Met. Soc. 89, 339 (1963).Google Scholar
  52. Swinbank, W. C.: The exponential wind profile. Quart. J. Roy. Met. Soc. 90, 119 (1964).Google Scholar
  53. Templeton, J. R.: Respiration and water loss at the higher temperatures in the desert iguana, Dipsosaurus dorsalis. Physiol. Zool. 33, 136–145 (1960).Google Scholar
  54. Templeton, J. R.: Reptiles, in comparative physiology of thermoregulation, G. C. Whittow, Ed. London-New York: Academic Press 1970.Google Scholar
  55. Tibbals, E. C., Carr, E. K., Gates, O. M., Kreith, F.: Radiation and convection in conifers. Amer. J. Bot. 51 (5), 529–538 (1965).Google Scholar
  56. Van Wijk, W. R., Ed.: Physics of plant environment. Amsterdam: North Holland Publishing 1963.Google Scholar
  57. Wathen, P., Mitchell, J. W., Porter, W. P.: Theoretical and experimental studies of energy exchange from jackrabbit ears and cylindrically shaped appendages. Biophysiol. J. 11, 1030–1047 (1971).Google Scholar
  58. Weathers, W. W.: Physiological thermoregulation in the lizard, Dipsosaurus dorsalis. Copeia No. 3, 549–557 (1970).Google Scholar
  59. Whitford, W. G., Hutchinson, H.: Body size and metabolic rate in salamanders. Physiol. Zool. 40, (2), 127–133 (1967).Google Scholar
  60. Wissler, E. H.: Comparison of computed results obtained from two mathematical models—a simple 14-node model and a complex 250-node model, J. de Physiologie 63, 455–458 (1971).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • W. P. Porter
    • 1
  • J. W. Mitchell
    • 2
  • W. A. Beckman
    • 2
  • C. B. DeWitt
    • 3
  1. 1.Department of ZoologyThe University of WisconsinMadison
  2. 2.Department of Mechanical EngineeringThe University of WisconsinMadison
  3. 3.Institute for Environmental StudiesThe University of WisconsinMadison

Personalised recommendations