Skip to main content
Log in

Optimal sugar concentrations of floral nectars —dependence on sugar intake efficiency and foraging costs

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

A model is developed to elucidate the determinants of sugar concentrations in flower nectars. This model analyses the efficiency of sugar intake, or energy flux, which for nectarivores closely approximates the rate of net energy gain. For both steady state and some non-steady flows of nectars, this energy flux is shown to be maximal at particular sugar concentrations referred to here as the maximum flux concentration. Higher concentrations actually yield lower energy intake rates because the concomitant rapid increase in viscosity sharply reduces the rate of fluid intake. For pure sucrose solutions, the maximum flux concentration is 22%. For flower nectars, which are chemically more complex, the maximum flux concentration is predicted to be closer to 26%, using the first viscosity measures obtained for flower nectars. This concentration is shown to be essentially independent of the pollinator's feeding organ morphology and of the type of potential inducing nectar flow. It is proposed that this concentration applies for virtually all pollinators that select nectars with maximal energy flux.

However not all pollinators are expected to select such nectars because this 26% concentration is not necessarily “optimal”. The model predicts that optimal sugar concentrations vary for particular pollinators as a function of two primary factors: (1) the energy flux derived from the nectar, as discussed above, as well as (2) the relative contribution of transit costs to overall foraging costs. Relatively “dilute” nectars, with sugar concentrations close to the maximal flux value, are predicted for flowers pollinated by organisms that minimize feeding time to reduce high feeding costs, such as that of hovering or of exposure to enhanced predation while feeding. More concentrated nectars are predicted for flowers pollinated by nectarivores that incur high foraging transit costs relative to feeding costs.

Flowers pollinated by hovering pollinators, including many hummingbirds, hawkmoths and bats, have nectars with mean sugar concentrations in close accord with the 26% maximum flux concentration predicted. Moreover, these nectars have relatively low concentrations of nonsugar constituents, which increase viscosity and thereby decrease sugar flux. Over 75% of the flowers examined in this study, which are pollinated primarily by territorial hummingbird species, provide nectars that allow sugar uptake with an efficiency of 90% or greater of the maximal value. According to the model, these data suggest that feeding costs of these pollinators far outweigh foraging transit costs. In contrast, the model suggests that flower nectars taken by traplining hummingbirds and by bees, with sugar concentrations significantly above the maximum flux value, reflect the higher costs of foraging flight relative to costs of feeding for these pollinators.

Increasing temperature decreases nectar viscosity, and thereby increases absolute nectar uptake rates sharply. This leads to a number of predictions regarding foraging behavior as well as flower location, orientation, and color. However, the maximum flux concentration is shown to be practically invariable over a wide range of temperatures-increasing by only 2% sugar from 10°C to 30°C. Thus, contrary to previous expectations, little change in average sugar concentrations of flowers pollinated by particular groups of nectarivores is expected from cooler to warmer regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker HG (1975) Sugar concentrations in nectars from hummingbird flowers. Biotropica 7:37–41

    Google Scholar 

  • Baker HG (1977a) Non-sugar chemical constituents of nectar. Apidologie 8:349–356

    Google Scholar 

  • Baker HG (1977b) Chemical aspects of the pollination biology of woody plants in the tropics. In: Tomlinson PB, Zimmermann M (eds), Tropical Trees as Living Systems. Cambridge Univ Press, New York, pp 57–82

    Google Scholar 

  • Baker HG, Baker I (1975) Studies of nectar-constitution and pollinatorplant coevolution. In: Gilbert LE, Raven PH (eds), Animal and Plant Coevolution. Univ of Texas press, Austin, pp 100–138

    Google Scholar 

  • Baker HG, Baker I (1982a) Floral nectar sugar constituents in relation to pollinator type. In: Jones CE, Little RJ (eds), Handbook of Experimental Pollination Biology. Van Nortrand-Reinhold, New York

    Google Scholar 

  • Baker HG, Baker I (1982b) Chemical constituents of nectar in relation to pollination mechanisms and phylogeny. In: Nitecki MH (ed), Biochemical Aspects of Evolutionary Biology. Univ Chicago Press, Chicago pp 131–171

    Google Scholar 

  • Baker HG, Opler PA, Baker I (1978) A comparison of the amino acid complements of floral and extrafloral nectars. Bot Gaz 139:322–332

    Google Scholar 

  • Baker I, Baker HG (1976a) Analyses of amino acids in nectar. Phytochem Bull 9:4–7

    Google Scholar 

  • Baker I, Baker HG (1976b) Analyses of amino acids in flower nectars of hybrids and their parents, with phylogenetic implications. New Phytol 76:87–98

    Google Scholar 

  • Barber EJ (1966) Calculation of density and viscosity of sucrose solutions as a function of concentration and temperature. National Cancer Institute Monograph 21, The Development of Zonal Centrifuges: 219–239

  • Bird RB, Stewart WE, Lightfoot EN (1960) Transport Phenomena. John Wiley & Sons, New York

    Google Scholar 

  • Bolten AB, Feinsinger P (1978) Why do hummingbird flowers secrete dilute nectar? Biotropica 10:307–309

    Google Scholar 

  • Bolten AB, Feinsinger P, Baker HG, Baker I (1979) On the calculation of sugar concentration in flower nectar. Oecologia (Berlin) 41:301–304

    Google Scholar 

  • Browne CA, Zerban FW (1941) Physical and Chemical Methods of Sugar Analysis, 3rd edition. John Wiley & Sons, New York

    Google Scholar 

  • Calder WA III (1979) On the temperature-dependency of optimal nectar concentrations for birds. J theor Biol 78:185–196

    Google Scholar 

  • Calder WA III, Hiebert SM (1980) Diuresis and solute losses of hummingbirds. Federation Proceedings 39:588

    Google Scholar 

  • Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Pop Biol 9:129–135

    Google Scholar 

  • Corbet SA, Willmer PG (1981) The nectar of Justicia and Columnea: composition and concentration in a humid tropical climate. Oecologia (Berlin) 51:412–418

    Google Scholar 

  • De Benedictis PA, Gill FB, Hainsworth FR, Pyke GH, Wolf LL (1978) Optimal meal size in hummingbirds. Amer Natur 112:301–316

    Google Scholar 

  • DesGranges J-L (1977) Interactions among resident and migrant hummingbirds in Mexico. Ph. D. thesis, Dept. of Biology, McGill Univ, Montreal

    Google Scholar 

  • DesGranges J-L (1978) Organization of a tropical nectar feeding bird guild in a variable environment. Living Bird 17:199–236

    Google Scholar 

  • Dunlop-Pianka H, Boggs CL, Gilbert LE (1977) Ovarian dynamics in heliconiine butterflies: Programmed senescence versus eternal youth. Science 197:487–490

    Google Scholar 

  • Ewald PW, Williams WA (1982) Function of the bill and tongue in nectar uptake by hummingbirds. Auk 99:573–576

    Google Scholar 

  • Fasman GD (ed) (1975) Viscosity and density tables. In: Handbook of Biochemistry and Molecular Biology, Vol 1: Physical and Chemical Data, 3rd edition. CRC Press, Cleveland, p 415–418

    Google Scholar 

  • Feinsinger P (1976) Organization of a tropical guild of nectarivorous birds. Ecol Monogr 46:257–291

    Google Scholar 

  • Feinsinger P, Colwell RK (1978) Community organization among neotropical nectar-feeding birds. Amer Zool 18:779–795

    Google Scholar 

  • Gass CL (1978) Experimental studies of foraging in complex laboratory environments. Amer Zool 18:617–626

    Google Scholar 

  • Gass CL, Montgomerie RD (1981) Hummingbird foraging behavior: decisionmaking and energy-regulation. In: A. Kamil and T. Sargent (eds), Foraging Behavior. Garland STPM Press, New York, p 159–194

    Google Scholar 

  • Gates DM (1980) Biophysical Ecology. Springer, New York

    Google Scholar 

  • Gilbert LE (1972) Pollen feeding and reproductive biology of Heliconius butterflies. Proc Nat Acad Sci USA 69:1403–1407

    Google Scholar 

  • Hainsworth FR (1973) On the tongue of a hummingbird: its role in the rate and energetics of feeding. Comp Biochem Physiol 46 A:65–78

    Google Scholar 

  • Hainsworth FR (1981) Energy regulation in hummingbirds. Amer Sci 69:420–429

    Google Scholar 

  • Hainsworth FR, Wolf LL (1972) Energetics of nectar extraction in a small, high altitude, tropical hummingbird, Selasphorus flammula. J Comp Physiol 80:377–387

    Google Scholar 

  • Hainsworth FR, Wolf LL (1976) Nectar characteristics and food selection by hummingbirds. Oecologia 25:101–113

    Google Scholar 

  • Heinrich B (1975) Energetics of pollination. Annu Rev Ecol Syst 6:139–170

    Google Scholar 

  • Heinrich B (1979) Bumblebee Economics. Harvard Univ Press, Cambridge

    Google Scholar 

  • Heyneman AJ, Hallet B (in prep.) Field measure of viscosity for microliter quantities of nectar

  • Hiebert SM, Calder WA III (in press) Sodium, potassium, and chloride in floral nectars; energy-free contributions to refractive index and salt balance. Ecology

  • Howell DJ (1974) Bats and pollen: Physiological aspects of the syndrome of chiropterophily. Comp Biochem Physiol 48A:263–276

    Google Scholar 

  • Inouye DW, Favre ND, Lanum JA, Levine DM, Meyers JB, Roberts MS, Tsao FC, Wang Y-Y (1980) The effects of nonsugar nectar constituents on estimates of nectar energy content. Ecology 61:992–996

    Google Scholar 

  • Kevan PG (1975) Sun-tracking solar furnaces in High Arctic flowers: significance for pollination and insects. Science 189:723–726

    Google Scholar 

  • Kingsolver JG, Daniel TL (1979) On the mechanics and energetics of nectar feeding in butterflies. J theor Biol 76:167–179

    Google Scholar 

  • Kingsolver JG, Daniel TL (1983) Mechanical determinants of nectar feeding strategy in hummingbirds: energetics, tongue morphology, and licking behavior. Oecologia (Berlin) 60:214–226

    Google Scholar 

  • Knutson RM (1979) Plants in heat. Natural History 88:42–47

    Google Scholar 

  • Lamarck JB de (1778) Flore francaise 3: 1150. Paris

  • Meeuse BJD (1978) The physiology of some sapromyophilous flowers. In: AJ Richards (ed), Pollination of Flowers by Insects. Academic Press, London p 97–104

    Google Scholar 

  • Rennycuick CJ (1968) Power requirements for horizontal flight in the pigeon, Columba livia. J Exp Biol. 49:527–555

    Google Scholar 

  • Pyke GH, Waser NM (1981) The production of dilute nectars by hummingbird and honeyeater flowers. Biotropica 13:260–270

    Google Scholar 

  • Reid RC, Sherwood TK (1958) Properties of Gases and Liquids. McGraw-Hill, New York

    Google Scholar 

  • Scogin R (1980) Floral pigments and nectar constituents of two bat-pollinated plants: coloration, nutritional, and energetic considerations. Biotropica 12:273–276

    Google Scholar 

  • Schmidt-Nielsen K (1964) Desert Animals: Physiological Problems of Heat and Water. Oxford Univ Press, London

    Google Scholar 

  • Sheithauer W (1967) Hummingbirds. Crowell, New York

    Google Scholar 

  • Smith I (1969) Chromatographic and Electrophoretic Techniques, Vol I, Chromatography, 3rd Edition. Heinemann, London

    Google Scholar 

  • Southwick EE, Pimentel D (1981) Energy efficiency of honey production by bees. BioScience 31:730–732

    Google Scholar 

  • Stiles FG (1976) Taste preferences, color preferences, and flower choice in hummingbirds. Condor 78:10–26

    Google Scholar 

  • Sutherland S (in prep.) Nectar concentration in hummingbird flowers: Maximizing the instantaneous rate of energy intake

  • Washburn EW (1921) The dynamics of capillary flow. Physical Review 17:273–283

    Google Scholar 

  • Weast RC (ed) (1976) Handbook of Chemistry and Physics. CRC Press, Cleveland

    Google Scholar 

  • Willmer PG (1980) The effects of insect visitors on nectar constituents in temperate plants. Oecologia 47:270–277

    Google Scholar 

  • Willmer PG, Corbet SA (1981) Temporal and microclimatic partitioning of the floral resources of Justicia aurea amongst a concourse of pollen vectors and nectar robbers. Oecologia (Berlin) 51:67–78

    Google Scholar 

  • Wolf LL, Hainsworth FR, Stiles FG (1972) Energetics of foraging: Rate and efficiency of nectar extraction by hummingbirds. Science 176:1351–1352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heyneman, A.J. Optimal sugar concentrations of floral nectars —dependence on sugar intake efficiency and foraging costs. Oecologia 60, 198–213 (1983). https://doi.org/10.1007/BF00379522

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379522

Keywords

Navigation