Skip to main content
Log in

Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life-forms, habitat preference and the occurrence of CAM

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

An investigation was carried out into the photosynthetic pathways of the complete bromeliad flora of Trinidad (West Indies). Carbon-isotope ratios (δ13C values) were used to distinguish obligate C3 and crassulacean acid metabolism (CAM) species. Measurements were also carried out on some species in the field to test for day-night changes in leaf titratable acidity.

A wide range of δ13C values was found. The obligate CAM species had values of -10 to -20‰ and the obligate C3 species of -23 to -35‰ CAM was found (a) in the majority of Tillandsia spp. (Tillandsioideae) and (b) in all species of Bromelioideae. The other genera of the Tillandsioideae appeared to be at least predominantly C3. One species, Guzmania monostachia var. monostachia, was identified as a C3-CAM intermediate, and others may well exist in the Trinidad flora. The influence of factors such as source CO2, photosynthetic photon flux density and ambient humidity in determining the δ13C values is discussed.

The taxonomic distribution of C3 and CAM species within the Bromeliaceae is analyzed in terms of the life-forms and ecological types recognized by Pittendrigh (1948). The most xerophytic species (the light-demanding “atmospherics”) all show CAM and are restricted to the drier parts of the island. Most of the species with waterstoring “tanks” have a wide geographic distribution: these include light-demanding C3 plants and less light-demanding CAM plants. The shade-tolerant bromeliads, which show a requirement for high ambient humidity, are all C3 plants. We discuss the phylogenetic origins of CAM and the epiphytic habit in the Bromeliaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beard JS (1946) The Natural Vegetation of Trinidad. Oxford Forestry Memoirs, Number 20. Oxford University Press

  • Bendrat M (1929) Zur Physiologie der organischen Säuren in grünen Pflanzen. VI. Ein Beitrag zur Kenntnis des Säurestoffwechels sukkulenter Pflanzen. Planta 7:508–584

    Google Scholar 

  • Benzing DH (1980) The Biology of the Bromeliads. Mad River Press Inc., Eureka, California

    Google Scholar 

  • Benzing DH, Renfrow A (1971a) The significance of photosynthetic efficiency to habitat preference and phylogeny among tillandsioid bromeliads. Bot Gaz 132:19–30

    Google Scholar 

  • Benzing DH, Renfrow A (1971b) Significance of the patterns of CO2 exchange to the ecology and phylogeny of the Tillandsioideae (Bromeliaceae). Bull Torrey Bot Club 98:322–327

    Google Scholar 

  • Björkman O (1981) Responses to different quantum flux densities. In: Encyclopedia of Plant Physiology, New Series, Vol 12A, Physiological Plant Ecology I, Responses to the Physical Environment, Lange OL, Nobel PS, Osmond CB, Ziegler H (eds). Springer-Verlag, Berlin Heidelberg New York, pp 57–107

    Google Scholar 

  • Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Ann Rev Plant Physiol 28:355–377

    Google Scholar 

  • Coutinho LM (1963) Algumas informações sôbre a ocorrência do “Efeito de De Saussure” em epífitas e erbáceas terrestres da mata pluvial. Bol Fac Filos Ciên Letr USP No. 288, Botânica 20:81–98

    Google Scholar 

  • Coutinho LM (1969) Novas observações sôbre a ocorrência do “Efeito de De Saussure” e suas relações com a suculência, a temperatura folhear e os movimentos estomáticos. Bol Fac Filos Ciên Letr USP No. 331, Botânica 24:77–102

    Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Google Scholar 

  • Deleens E, Garnier-Dardart J (1977) Carbon isotope composition of biochemical fractions isolated from leaves of Bryophyllum daigremontianum Berger, a plant with crassulacean acid metabolism: some physiological aspects related to CO2 dark fixation. Planta 135:241–248

    Google Scholar 

  • Farquhar GD, Ball MC, von Caemmerer S, Roksandic Z (1982a) Effect of salinity and humidity on δ13C value of halophytes — evidence for diffusional isotope fractionation determined by the ratio of intercellular/atmospheric partial pressure of CO2 under different environmental conditions. Oecologia (Berlin) 52:121–124

    Google Scholar 

  • Farquhar GD, O'Leary MH, Berry JA (1982b) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Google Scholar 

  • French RP (1973) A guide to the birds of Trinidad and Tobago. Livingston, Wynnewood, Pennsylvania

    Google Scholar 

  • Kluge M, Lange OL, von Eichmann M, Schmid M (1973) Diurnaler Säurerhythmus bei Tillandsia usneoides: Untersuchungen über den Weg des Kohlenstoffs sowie die Abhängigkeit des CO2-Gaswechsels von Lichtintensität, Temperatur und Wassergehalt der Pflanze. Planta 112:357–372

    Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean Acid Metabolism. Analysis of an Ecological Adaptation. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Martin CE, Christensen NL, Strain BR (1981) Seasonal patterns of growth, tissue acid fluctuations, and 14CO2 uptake in the Crassulacean Acid Metabolism epiphyte Tillandsia usneoides L. (Spanish Moss). Oecologia (Berlin) 49:322–328

    Google Scholar 

  • McWilliams EL (1970) Comparative rates of dark CO2 uptake and acidification in the Bromeliaceae, Orchidaceae, and Euphorbiaceae. Bot Gaz 131:285–290

    Google Scholar 

  • McWilliams EL (1974) Chromosome number and evolution. In: Flora Neotropica, Monograph No. 14, Part 1, Pitcairnioideae (Bromeliaceae), Smith LB, Downs RJ. Hafner Press, New York, pp 33–40

    Google Scholar 

  • Medina E (1974) Dark CO2 fixation, habitat preference and evolution within the Bromeliaceae. Evolution 28:677–686

    Google Scholar 

  • Medina E, Delgado M, Troughton JH, Medina JD (1977) Physiological ecology of CO2 fixation in Bromeliaceae. Flora 166:137–152

    Google Scholar 

  • Medina E, Minchin P (1980) Stratification of δ13C values in Amazonian rain forests. Oecologia (Berlin) 45:377–378

    Google Scholar 

  • Medina E, Troughton JH (1974) Dark CO2 fixation and the carbon isotope ratio in Bromeliaceae. Plant Sci Lett 2:357–362

    Google Scholar 

  • Mez C (1904) Physiologische Bromeliaceen-Studien. I. Die Wasser-Ökonomie der extrem atmosphärischen Tillandsien. Jahrb wiss Botanik 40:157–229

    Google Scholar 

  • Mooney HA, Troughton JH, Berry JA (1977) Carbon isotope ratio measurements of succulent plants in southern Africa. Oecologia (Berlin) 30: 295–305

    Google Scholar 

  • Nuernbergk EL (1961) Endogener Rhythmus und CO2-Stoffwechsel bei Pflanzen mit diurnalem Säurerhythmus. Planta 56:28–70

    Google Scholar 

  • O'Leary MH (1980) Carbon isotope fractionation in plants. Phytochemistry 20:553–567

    Google Scholar 

  • O'Leary MH, Osmond CB (1980) Diffusional contribution to carbon isotope fractionation during dark CO2 fixation in CAM plants. Plant Physiol 66:931–934

    Google Scholar 

  • Ortlieb U, Winkler S (1977) Ökologische Differenzierungsmuster in der Evolution der Bromeliaceen. Bot Jahrb Syst 97:586–602

    Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Ann Rev Plant Physiol 29:379–414

    Google Scholar 

  • Osmond CB, Ziegler H, Stichler W, Trimborn P (1975) Carbon isotope discrimination in alpine succulent plants supposed to be capable of crassulacean acid metabolism (CAM). Oecologia (Berlin) 18:209–217

    Google Scholar 

  • Osmond CB, Winter K, Ziegler H (1982) Functional significance of different pathways of CO2 fixation in photosynthesis. In: Encyclopedia of Plant Physiology, New Series, Vol 12B, Physiological Plant Ecology II, Water Relations and Carbon Assimilation, Lange OL, Nobel PS, Osmond CB, Ziegler H (eds). Springer-Verlag, Berlin Heidelberg New York, pp 479–547

    Google Scholar 

  • Pittendrigh CS (1948) The bromeliad-Anopheles-malaria complex in Trinidad. I—The bromeliad flora. Evolution 2:58–89

    Google Scholar 

  • Rauh W (1970) Bromelien für Zimmer und Gewächshaus. Band 1, Die Tillandsioideen. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Raven JA, Beardall J, Griffiths H (1982a) Inorganic C-sources for Lemanea, Cladophora and Ranunculus in a fast-flowing stream: measurements of gas exchange and of carbon isotope ratio and their ecological implications. Oecologia (Berlin) 53:68–78

    Google Scholar 

  • Raven JA, Griffiths H, Glidewell SM, Preston T (1982b) The mechanism of oxalate biosynthesis in higher plants: investigations with the stable isotopes 18O and 13C. Proc R Soc Lond B 216:87–101

    Google Scholar 

  • Rundel PW, Rundel JA, Ziegler H, Stichler W (1979) Carbon isotope ratios of central Mexican Crassulaceae in natural and greenhouse environments. Oecologia (Berlin) 38:45–50

    Google Scholar 

  • Schimper AFW (1888) Die epiphytische Vegetation Amerikas. Bot Mitt Tropen II

  • Smith LB (1934) Geographical evidence on the lines of evolution in the Bromeliaceae. Bot Jahrb 66:446–468

    Google Scholar 

  • Smith LB, Downs RJ (1974) Flora Neotropica, Monograph No. 14, Part 1, Pitcairnioideae (Bromeliaceae). Hafner Press, New York

    Google Scholar 

  • Smith LB, Downs RJ (1977) Flora Neotropica, Monograph No. 14, Part 2, Tillandsioideae (Bromeliaceae). Hafner Press, New York

    Google Scholar 

  • Smith LB, Downs RJ (1979) Flora Neutropica, Monograph No. 14, Part 3, Bromelioideae (Bromeliaceae). Hafner Press, New York

    Google Scholar 

  • Smith LB, Pittendrigh CS (1967) Bromeliaceae. In: Flora of Trinidad and Tobago, Vol III, Part II, Epigynae (pars). Ministry of Agriculture, Industry and Commerce, Trinidad and Tobago, pp 35–91

    Google Scholar 

  • Sugden AM (1981) Aspects of the ecology of vascular epiphytes in two Colombian cloud forests. II. Habitat preferences of Bromeliaceae in the Serranía de Macuira. Selbyana 5:264–273

    Google Scholar 

  • Teeri J (1982) Photosynthetic variation in the Crassulaceae. In: Crassulacean Acid Metabolism, Ting IP, Gibbs M (eds). American Society of Plant Physiologists, Rockville, Maryland, pp 244–259

    Google Scholar 

  • Tenhunen JD, Tenhunen LC, Ziegler H, Stichler W, Lange OL (1982) Variation in carbon isotope ratios of Sempervivoideae species from different habitats of Teneriffe in the spring. Oecologia (Berlin) 55:217–224

    Google Scholar 

  • Tietze M (1906) Physiologische Bromeliaceen-Studien. II. Die Entwicklung der wasseraufnehmenden Bromeliaceen Trichome. Z Naturwiss 78:1–49

    Google Scholar 

  • Ting IP, Gibbs M (eds) (1982) Crassulacean Acid Metabolism. American Society of Plant Physiologists, Rockville, Maryland

    Google Scholar 

  • Tomlinson PB (1969) Anatomy of the Monocotyledons (Metcalfe CR, ed), III Commelinales-Zingiberales. Oxford University Press

  • Troughton JH (1979) δ13C as an indicator of carboxylation reactions. In: Encyclopedia of Plant Physiology, New Series, Vol 6, Photosynthesis II, Photosynthetic Carbon Metabolism and Related Processes, Gibbs M, Latzko E (eds). Springer-Verlag, Berlin Heidelberg New York, pp 140–149

    Google Scholar 

  • Warburg O (1886) Über die Bedeutung der organischen Säuren für den Lebensprozess der Pflanzen (speziell der sog. Fettpflanzen). Untersuchungen Bot Inst Tübingen 2:53–150

    Google Scholar 

  • Winter K (1979) δ13C values of some succulent plants from Madagascar. Oecologia (Berlin) 40:103–112

    Google Scholar 

  • Winter K, Troughton JH (1978) Photosynthetic pathways in plants of coastal and inland habitats of Israel and the Sinai. Flora 167:1–34

    Google Scholar 

  • Winter K, Wallace BJ, Stocker GC, Roksandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia (Berlin) 57:129–141

    Google Scholar 

  • Zioegler H, Batanouny KH, Sankhla N, Vyas OP, Stichler W (1981) The photosynthetic pathway types of some desert plants from India, Saudi Arabia, Egypt, and Iraq. Oecologia (Berlin) 48:93–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, H., Smith, J.A.C. Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life-forms, habitat preference and the occurrence of CAM. Oecologia 60, 176–184 (1983). https://doi.org/10.1007/BF00379519

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379519

Keywords

Navigation