Skip to main content
Log in

Cold hardiness and supercooling along an altitudinal gradient in andean giant rosette species

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Factors affecting supercooling capacity and cold hardiness were investigated in leaves of ten giant rosette species of the genus Espeletia (Compositae). These species grow along a 2,800–4,200 m elevation gradient in the Venezuelan Andes. In this high tropical environment, freezing frequently occurs every night, particularly above 3,300 m, but lasts for only a few hours. Supercooling capacty is linearly related to leaf water potential (Ψ L ) in all species; however supercooling is more responsive to Ψ L changes in Espeletia species from high paramos. The rate of change in the species-specific supercooling point and the rate of change of average annual minimum temperature along the elevation and climatic gradient follow the same trend (approximately -0.6 K per 100 m elevation). At a given elevation, the expanded leaves of the different species tend to supercool 8–10 K below minimum air temperatures. Experimentally-induced freezing was accompanied by the formation of intracellular ice and tissue damage. The relative apoplastic water content (RAWC) of the leaves, which may influence the ice nucleation rate or the facility by which ice propagates, was determined by pressure-volume methods. Species from higher sites tend to exhibit lower RAWC (2%–7%) than species from lower sites (7%–36%). A causal relationship between supercooling capacity and RAWC is suggested. In the high tropical Andes, the temperature oxotherm plateau of Espeletia leaves seems to be sufficiently fow to avoid freezing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aristeguieta L (1964) Flora de Venezuela: Compositae. Instituto Botanico, Direecion de Recursos Naturales Renovables, Vol X, parte primera. Caracas

  • Beck E, Senser M, Scheibe R, Steiger HM, Pontgrantz P (1982) Frost avoidance and freezing tolerance in Afroalpine giant rosette plants. Plant, Cell and Env 5:215–222

    Google Scholar 

  • Beck E, Schulze E-D, Senser M, Scheibe R (1984) Equilibrium freezing of leaf water and extracellular ice formation in Afroalpine ‘giant rosette’ plants. Planta 162:276–282

    Google Scholar 

  • Burke MJ, Gusta LV, Quamme HA, Weiser CJ, Li PH (1976) Freezing and injury in plants. Ann Rev Plant Physiol 27:507–528

    Google Scholar 

  • Coe MJ (1967) The Ecology of the Alpine Zone of Mount Kenya. Monogr. Biol. 17:1–136

    Google Scholar 

  • Cuatrecasas J (1979) Growth forms of the Espeletiinae and their correlation to vegetation types in the high tropical Andes. In: Larsen K, Holm-Nielsen LB (eds) Tropical Botany. Academic Press, New York, pp 397–410

    Google Scholar 

  • Estrada C (1984) Dinamica del crecimiento y reproduccion de Espeletia en el Paramo Desertico. Unpubl. MS Thesis, Universidad de los Andes, Merida, Venezuela

    Google Scholar 

  • George MF, Burke MJ, Pellett HM, Johnson AG (1974) Flow temperature exotherms and woody plant distribution. Hort Science 9:519–522

    Google Scholar 

  • Goldstein G, Meinzer F (1983) Influence of insulating dead leaves and low temperatures on water balance in an Andean giant rosette species. Plant, Cell and Env 6:649–656

    Google Scholar 

  • Goldstein G, Meinzer F, Monasterio M (1984) The role of capacitance in the water balance of Andean giant rosette species. Plant, Cell and Env 7:179–186

    Google Scholar 

  • Hedberg O (1964) Features of afroalpine plant ecology. Acta Phytogeographica Suecica 49:1–144

    Google Scholar 

  • Kaku S, Iwaya M (1978) Low temperature exotherms in xylems of evergreen and deciduous broad-leaved trees in Japan with reference to freezing resistance and distribution range. In: Li PH, Sakai A (eds) Plant cold hardiness and freezing stress. Academic Press, New York, pp 227–239

    Google Scholar 

  • Larcher W (1971) Die Kälteresistenz von Obstbäumen und Ziergehölzen subtropischer Herkunft. Oecol Plant 6:1–14

    Google Scholar 

  • Larcher W (1973) Gradual process of damage due to temperature stress. In: Precht H, Christophersen J, Hansel H, Larcher W (eds) Temperature and life. Springer-Verlag, Berlin-heidelberg-New York, pp 195–203

    Google Scholar 

  • Larcher W (1975) Pflanzenökologische Beobachtungen in der Paramostufe der Venezolanischen Anden. Anz math-naturw. Kl Österr Akad Wiss, 11:194–213

    Google Scholar 

  • Larcher W (1981) Resistenzphysiologische Grundlagen der evolutiven Kälteakklimatisation von Sprosspflanzen. Pl. Syst. Evol. 137:145–180

    Google Scholar 

  • Larcher W (1982) Typology of freezing phenomena among vascular plants and evolutionary trends in frost acclimation. In: Li PH, Sakai A (eds) Plant Cold Hardiness and Freezing Stress. Academic Press, New York, pp 417–426

    Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses 2d ed Vol 1 Chilling, freezing, and high temperature stresses. Academic Press, New York

    Google Scholar 

  • Meinzer F, Goldstein G (1984) Water and energy economy adaptations in Andean giant rosette plants. In: Givnish T, Robichaux R (eds) Evolutionary constraints on primary productivity: Adaptive strategies of energy capture in plants. Cambridge Univ Press (in press)

  • Meinzer F, Goldstein G, Rundel P (1985) Morphological changes along an altitudinal gradient and their consequences for an Andean giant rosette plant. Oecologia (Berlin) 65:278–283

    Google Scholar 

  • Monasterio M (1980) Las formaciones vegetales de los Paramos de Venezuela. In: Monasterio M (ed) Estudios ecologicos en los páramos andinos. Ediciones de la Universidad de los Andes, Merida, Venezuela, pp 93–158

    Google Scholar 

  • Monasterio M, Reyes S (1980) Diversidad ambiental y variacion de la vegetacion en los páramos de los Andes venezolanos. In: Monasterio M (ed) Estudios ecologicos en los paramos andinos. Ediciones de la Universidad de los Andes, Merida, Venezuela, pp 47–91

    Google Scholar 

  • Quamme H, Stushnoff C, Weiser C (1972) The relationship of exotherms to cold injury in apple stem tissues. J Am Soc Hort Sci 97:608–613

    Google Scholar 

  • Rada F (1983) Mecanismos de resistencia a temperaturas congelantes en Espeletia spicata y Polylepis sericea. Unpubl. MS Thesis. Universidad de los Andes, Merida, Venezuela

    Google Scholar 

  • Rada F, Goldstein G, Azocar A (1985) Frost avoidance in Andean giant rosette plants. Plant, Cell & Env (in press)

  • Rosenberg NJ (1974) Microclimate: The biological environment. John Wiley & sons, New York

    Google Scholar 

  • Salt RW, Kaku S (1967) Ice nucleation and propagation in Spruce needles. Can J Bot 45:1335–1346

    Article  Google Scholar 

  • Schubert C, Medina E (1982) Evidence of quaternary glaciation in the Dominican Republic: Some implications for Caribbean paleoclimatology. Paleogeography, Paleoclimatology, Paleoecology 39:281–294

    Google Scholar 

  • Smith AP (1974) Bud temperature in relation to nyctinastic leaf movement in an Andean giant rosette plant. Biotropica 6:163–266

    Google Scholar 

  • Smith AP (1979) Function of dead leaves in Espeletia schultzii (Compositae), an Andean caulescent rosette species. Biotropica 11:43–47

    Google Scholar 

  • Steponkus P, Lanphear F (1967) Refinement of the triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol 42:1423–1426

    Google Scholar 

  • Timmis R, Worrall J (1975) Environmental control of cold acclimation in Douglas Fir during germination, active growth and rest. Can J For Res 4:229–237

    Google Scholar 

  • Troll C (1968) The Cordilleras of the tropical Americas: aspects of climatic, phytogeographical and agrarian ecology. Coll. Geogr 9:15–56

    Google Scholar 

  • Tyree MT, Hammel HT (1972) The measurement of the turgor pressure on the water relations of plant by the pressure-bomb technique. J Exp Bot 23:267–282

    Google Scholar 

  • Tyree MT, Richter H (1981) Alternate methods of analysing water potential isotherms: Some cautions and clarifications I The impact of nonideality and of some experimental error. J Exp Bot 32:643–653

    Google Scholar 

  • Tyree MT, Richter H (1982) Alternate methods of analysing water potential isotherms: Some cautions and clarifications. II Curvilinearity in water potential isotherms. Can J Bot 60:911–916

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstein, G., Rada, F. & Azocar, A. Cold hardiness and supercooling along an altitudinal gradient in andean giant rosette species. Oecologia 68, 147–152 (1985). https://doi.org/10.1007/BF00379487

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379487

Keywords

Navigation