, Volume 74, Issue 2, pp 272–276 | Cite as

An upper limit to the abundance of aquatic organisms

  • C. M. Duarte
  • S. Agusti
  • H. Peters
Original Papers


The maximum density achievable by aquatic organisms is an inverse linear function of their body size. As a consequence, the maximum achievable biomass is independent of body size, and is 2 orders of magnitude higher than the biomass in natural populations. The minimum interorganismic terorganismic distance, calculated from the maximum density to allow comparison between aquatic and terrestrial organisms, scales as the 1/3 power of body size in both habitats. The similarities in the interorganismic distance of terrestrial and aquatic plant and animal communities suggest a fundamental regularity in the way organisms use the space.

Key words

Body size Aquatic organisms, maximum density maximum biomass, interorganismic distance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agusti S, Duarte CM, Kalff J (1987) Algal cell size and the maximum biomass and density of phytoplankton. Limnol Oceanogr 32: (In press)Google Scholar
  2. Anderson PJ, McNeil K, Watson K (1986) High efficiency carbohydrate fermentation to ethanol at tempertures above 40 C by Kluyveromices marxianus, var marxianus isolated from sugar mills. J Appl Environ Microbiol 51:1314–1320Google Scholar
  3. Anwar A, Ishak MM, El-Zeiny M, Hassanen GDI (1982) Activated sludge as a replacement for brancotton seed meal for carp, Cyprinus carpio L. Aquaculture 28:321–325Google Scholar
  4. Bages M, Sloane L (1981) Effects of dietary protein and starch levels on growth and survival of Penaeus monodon (Fabricius) postlarvae. Aquaculture 25:117–128Google Scholar
  5. Baxter M, Sieburth JMcN (1984) Metabolic and ultrastructural response to glucose of two eurytrophic bacteria isolated from seawater at different enriching concentrations. J Appl Environm Microbiol 47:31–38Google Scholar
  6. Begon M, Firbank L, Wall R (1986) Is there a self-thinning rule for animal populations? Oikos 46:122–123Google Scholar
  7. Belkin S, Wirsen CO, Jannasch HW (1976) A new sulfur-reducing extremely thermophilic Eubacterium from a submarine thermal vent. J Appl Environm Microbiol 51:1180–1185Google Scholar
  8. Bernardi de R, Giussani G, Lasso Pedretti E (1979) Food suitabillity and availability, demographic parameters and population growth in Daphnia obstusa Kurz under laboratory conditions. Mem Ist Ital Idrobiol Suppl 37:233–243Google Scholar
  9. Blakemore RP, Maratea D, Wolfe RS (1977) Isolation and pure culture of a freshwater magnetic Spirillum in chemically defined medium. J Bacteriol 140:147–153Google Scholar
  10. Calder WA III (1984) Size, function, and life history. Harvard Univ Press, LondonGoogle Scholar
  11. Chang KP (1976) Reduced growth of Blastocrithidia culicis and crithidia oncopelti feed of intracelular symbiotes by chloramphenicol. J Protozool 22:271–276Google Scholar
  12. Charlon N, Duranto H, Escaffre A-M, Bergot P (1986) Alimentation artificielle des larves de carpe (Cyprinus carpio L.) Aquaculture 54:83–88Google Scholar
  13. Chua TE, Teng SK (1980) Economic production of estuary grouper, Epinephelus salmoides Maxwell, reared in floating net cages. Aquaculture 20:187–228Google Scholar
  14. Colt J, Ludwig R, Tchobanogloss G, Cech JJ Jr (1981) The effect of nitrate on the short-term growth and survival of channel catfish, Ictalucus punctatus 24:111–122Google Scholar
  15. Cuzon G, Hew M, Cognie D, Soletchnik P (1982) Time lag effect of feeding on growth of juvenile shrimp, Penaeus japonicus Batc. Aquaculture 29:33–44Google Scholar
  16. Damuth J (1981) Population size and body size in mammals. Nature 290:699–700Google Scholar
  17. De Paun N, Laureys P, Morales J (1981) Mass cultivation of Daphnia magna Straus on ricebran. Aquaculture 25:141–152Google Scholar
  18. Dia AK (1981) Etude de la croisance des juveniles de Chrysichthys walkeri (Gunther) en etang en fonction de la densite. Aquaculture 27:187–195Google Scholar
  19. Draoowski K, Hasard S, Quinn, Pitcher TJ, Flinn AM (1980) Effect of Geotrichium candidum protein substitution in pelleted fish feed on the growth of rainbow trout (Salmo gairdneri Rich) and on utilization of the diet. Aquaculture 21:213–232Google Scholar
  20. Duarte CM, Kalff J (1987) Weight-density relationships in submerged plants: The importance of light and plant geometry. Oecologia (Berlin) 72:612–617Google Scholar
  21. Fenchel F, Finlay BJ (1983) Respiration rates in heterotrophic, free-living protozoa. Microb Ecol 9:99–122Google Scholar
  22. Gibbons WR, Westoby CA, Dobbs TLJ (1986) Intermediate-scale, semicontinuous solid-phase fermentation process for production of fuel ethanol from wheat sorghum. J Appl Environ Microbiol 51:115–122Google Scholar
  23. Gilbert JJ (1985) Competition between rotifers and Daphnia. Ecology 66:1943–1950Google Scholar
  24. Gillin AM, Reiner DS, McCaun PP (1984) Inhibition of growth of Giardia lambia by difluoromethylornitrin a specific inhibitor of polyamine biosynthesis. J Protozool 31:161–163Google Scholar
  25. Gorham E (1979) Shoot height, weight and standing crop in relation to density of monospecific plants stands. Nature (London) 279:148–150Google Scholar
  26. Goulden CE, Henry LL, Tessier AJ (1982) Body size, energy reserves, and competitive ability in three species of Cladocera. Ecology 63:1780–1789Google Scholar
  27. Guerrero A (1980) Studies on the feeding of Tilapia nilotica in floating cages. Aquaculture 20:169–175Google Scholar
  28. Hackney PA (1974) The problem of density management. Progress Fish-Culturist 36:66–69Google Scholar
  29. Halsall DM, Goodchild DJ (1986) Nitrogen fixation associated with development and localization of mixed populations of Cellulomonas sp. and Azospirillum brasiliense grown on cellulose or wheat straw. J Appl Environ Microbiol 51:849–854Google Scholar
  30. Hirata H, Yamasaki S, Kawaguchi T, Ogawa M (1983) Continuous culture of the rotifer Brachionus plicatilis fed recycled algal diets. Hydrobiologia 104:71–75Google Scholar
  31. Hogendoorn H (1980) Controlled propagation of the African catfish, Clarias lazera (C& V). Aquaculture 21:233–241Google Scholar
  32. Hogendoorn H (1981) Controlled propagation of the African catfish, Clarias lazera (C & V). IV The effect of feeding regime on fingerling culture. Aquaculture 24:123–131Google Scholar
  33. Hughes D, Simpson L, Schneider CA (1983) Flagellar adherence of Crithidia fasciculata cells in culture. J Protozool 30:635–641Google Scholar
  34. James J, Bos-Abbas M, Al-Khars AM, Al-Hinty S, Salman AE (1983) Production of the rotifer Brachionus plicatilis for aquaculture in Kwait. Hydrobiologia 104:77–84Google Scholar
  35. Jhingran VG, Sehgal KL, Kumar K, Ghosh BB (1979) Rearing advanced fry of major indian carp species in recirculatory-filtering ponds at Barrackpore, West Bengal. Aquaculture 18:45–49Google Scholar
  36. Kahan D, Sharon RJ (1976) Effect of temperature on growth, cell size, and free aminoacid pool of the thermophilic ciliate Cyclidium citrullus. J Protozool 23:478–481Google Scholar
  37. Laughlin TJ, Henry JM, Phares EP, Long MV, Olins DE (1983) Methods for the large-scale cultivation of an Oxytricha (Ciliophora: Hypotrichida). J Protozool 30:121–129Google Scholar
  38. Lia IC, Juarro JV, Kumagar S, Nakajima H, Natividad N, Buri (1979) On the induced spawning and larval rearing of milkfish, Chanos chanos (Forskal). Aquaculture 18:75–93Google Scholar
  39. Lindstrom V (1983) Changes in growth and size of K. cochilaris (Gosse) in relation to some environmental factors in cultures. Hydrobiologia 104:325–328Google Scholar
  40. Luftenegger G, Foissner W, Adam H (1985) r-and k-selection of soil ciliates: a field and experimental approach. Oecologia (Berlin) 66:574–579Google Scholar
  41. Luksas AJ, Eruvin A (1983) The lipid requirement of the ciliated protozooa Tetrahymena patula. J Protozool 30:8–13Google Scholar
  42. Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New YorkGoogle Scholar
  43. Matsunaga T, Karube I, Suzuki SJ (1979) Electrode system for the determination of microbial populations. J Appl Environ Microbiol 37:117–121Google Scholar
  44. Nauwerck A (1963) Die Erziehungen zwischen Zooplankton und Phytoplankton im See Erken. Symb Bot Upsal 17: 163 ppGoogle Scholar
  45. Nolan TJ, Herman R (1985) Effects of long-term in vitro cultivation on Lershmania donovani promastigetes. J Protozool 32:324–331Google Scholar
  46. O'Dell WD, Brent MM (1974) Nutritional study of three strains of Naegleria gruberi. J Protozool 21:129–133Google Scholar
  47. Person-Le Ruyet J, Verillaud P (1980) Techniques d'élevage intensif de la Daniade dorée (Sparus aurata L.), de la naissance a l'age de deux mois. Aquaculture 20:351–370Google Scholar
  48. Peters RH (1983) The ecological implications of body size. Cambridge Univ Press, LondonGoogle Scholar
  49. Peters RH (1986) Seasonal and trophic effects on size structure of the planktonic communities in four lakes of northern Italy. Mem Its Ital Idrobiol 43:91–103Google Scholar
  50. Peters RH, Wassenberg K (1983) The effect of body size on animal abundance. Oecologia (Berlin) 60:89–96Google Scholar
  51. Pitcher TJ, Partridge (1979) Fish school density and volume. Mar Biol 54:383–394Google Scholar
  52. Ricci C (1979) Tasso intrinsico di accresciemento naturale in experimenti su coarti e su colture di massa. Mem Ist Ital Idrobiol 37:223–232Google Scholar
  53. Robinson JG, Redford KH (1986) Body size, diet, and population density of neotropical forest mammals. Am Nat 128:665–687Google Scholar
  54. Rodriguez J, Mullin M (1986) Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol Oceanogr 31:361–370Google Scholar
  55. Rohatji K, Krawieg S (1973) Some effects of chloramphenicol and ethidium bromide on Tetrahymena pyriformis. J Protozool 20:425–430Google Scholar
  56. Saint-Paul V (1986) Potential for aquaculture of South American freshwater Fishes: A review. Aquaculture 54:205–240Google Scholar
  57. Salt GW (1975) Changes in cell volume of Didinium nasutum during population increase. J Protozool 22:112–115Google Scholar
  58. Scort JM (1983) Rotifer nutrition using supplemented monoxenic cultures. Hydrobiologia 104:155–166Google Scholar
  59. Sheldon RW, Parsons TR (1967) A continuous size spectrum for particulte matter in the sea. J Fish Res Bd Canada 24:909–915Google Scholar
  60. Sheldon RW, Prakash A, Sutcliffe WH jr (1972) The size distribution of particles in the ocean. Limnol Oceanogr 17:327–340Google Scholar
  61. Silverman MP, Munoz EF (1979) Automatical electrical impedance technique for rapid enumeration of fecal coliforms in effluents from sewage treatments plants. J App Environ Microbiol 37:521–526Google Scholar
  62. Simpson AM, Hughes D, Simpson L (1985) Trypanosoma brucei: Differentiation of in vitro grown bloodstream trypanomastigoides into procyclic forms. J Protozool 32:672–677Google Scholar
  63. Sprules WG, Casselman J, Shuter BJ (1983) Size distribution of pelagic particles in lakes. Can J Fish Aquat Sci 40:1761–1769Google Scholar
  64. Sprules WG, Munawar M (1986) Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can J Fish Aquat Sci 43:1789–1794Google Scholar
  65. Sundarajan D, Victor Chandra Bose S, Venkatesan V (1979) Monoculture of tiger prawn, Penaeus monodon fabricius, in a brackishwater pond at Madras, India. Aquaculture 16:73–75Google Scholar
  66. Swingle HS, Smith EV (1941) The management of ponds for the production of game and pan fish. pp 218–221. In A symposium of hydrobiology. Univ Wisconsin Press, MadisonGoogle Scholar
  67. Tsai JC, Aladegbami, Vela GR (1979) Phosphate-limited cultures of Azotobacter vinelandii. J Bacteriol 139:639–645Google Scholar
  68. Tsubi M, Yanagishima N (1979) Effect of cyclic AMP, theophylline and caffeine on the glucose represion of sporulation in Saccharomices cerevisae. Arch Mikrobiol 93:1–12Google Scholar
  69. Weatherley AH (1972) Growth and ecology of fish populations. Academic Press, LondonGoogle Scholar
  70. Westoby M (1984) The self-thinning rule. Adv Ecol Res 14:167–225Google Scholar
  71. White J (1985) The thinning rule and its application to mixtures of plant populations. In: White J (ed) Studies on plant demography. Academic Press, London, pp 291–309Google Scholar
  72. Williams SF, Caldwell RS (1978) Growth, food conversion and survival of 0-group English sole (Parophrys vetulus Girard) at five temperatures and five rations. Aquaculture 15:185–193Google Scholar
  73. Wood JR, Wood FE (1981) Growth and digestibility for the green turtle (Chelonia mydas) fed diets containing varying protein levels. Aquaculture 25:269–274Google Scholar
  74. Zahorchak RJ, Charnetzky WT, Little RV, Brubaker RR (1979) Consequences of Ca27 defficiency on macromolecular synthesis and adenylate energy charge in Yersinia pestis. J Bacteriol 139:792–799Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • C. M. Duarte
    • 1
  • S. Agusti
    • 1
  • H. Peters
    • 1
  1. 1.Department of BiologyMcGill UniversityMontrealCanada

Personalised recommendations