Skip to main content
Log in

Maximum energy assimilation rates in the Djungarian hamster (Phodopus sungorus)

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Physiological limits to energy budgets were estimated in Djungarian hamsters (Phodopus sungorus) using food balance and respirometric methods. The summer acclimatized, reproductively inactive hamsters could balance their energy budget at-2° C, assimilating 91.1 kJ·animal-1· day-1 after gradual cold acclimation, whereas non-acclimated hamsters showed negative energy balance assimilating only 54.4 kJ·animal-1·day-1. At the same ambient temperature, multiparous females (although neither pregnant nor lactating at the time) maintained positive energy balance assimilating 81.6 kJ·animal-1·day-1. Hamsters are capable of rapid adjustments of their maximum assimilation rates to meet their current energy demands, but only up to the value of about 3.5xBMR. It is concluded, that the actual energy budgets of small mammals keep, all the time, fairly near the upper physiological limit, with body reserves ready to buffer short-term oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnett SA (1973) Maternal processes in the cold-adaptation of mice. Biol Rev 48:477–508

    Google Scholar 

  • Calow P (1984) Economics of ontogeny — adaptational aspects. In: Shorrocks B (ed) Evolutionary ecology. Blackwell, Oxford

    Google Scholar 

  • Caswell H (1982) Optimal life histories and the age-specific costs of reproduction. J theor Biol 98:519–529

    Google Scholar 

  • Drożdż A (1975) Food habits and food assimilation in mammals. In: Grodziński W, Klekowski RZ, Duncan A (eds) Methods for ecological bioenergetics. Blackwell, Oxford

    Google Scholar 

  • Edwards AL (1985) Multiple regression and the analysis of variance and covariance. Freeman, New York

    Google Scholar 

  • Figala J, Hoffman K, Goldau G (1973) Zur Jahresperiodik beim Dsungarischen Zwerghamster Phodopus sungorus Pallas. Oecologia (Berlin) 12:89–118

    Google Scholar 

  • Fleming TH (1979) Life-history strategies. In: Stoddart DM (ed) Ecology of small mammals. Chapman and Hall, London

    Google Scholar 

  • Gebczynska Z, Gebczyński M (1981) Length and weight of the alimentary tract of the root vole. Acta theriol 16:359–369

    Google Scholar 

  • Grodziński W, Makomaska M, Tertil R, Weiner J (1977) Bioenergetics and total impact of vole populations. Oikos 29:494–519

    Google Scholar 

  • Grodziński W, Wunder B (1975) Ecological energetics of small mammals. In: Golley FB, Petrusewicz K, Ryszkowski L (eds) Small mammals: their productivity and population dynamics. Cambridge University Press, London

    Google Scholar 

  • Gross JE, Wang W, Wunder BA (1985) Effects of food quality and energy needs: changes in gut morphology and capacity of Microtus ochrogaster. J Mammal 66:661–667

    Google Scholar 

  • Heldmaier G (1975) Metabolic and thermoregulatory responses to heat and cold in the Djungarian hamster, Phodopus sungorus. J Comp Physiol 102:115–122

    Google Scholar 

  • Heldmaier G, Steinlechner S (1981) Seasonal control of energy requirements for thermoregulation in the Djungarian hamster (Phodopus sungorus). living in natural photoperiod. J Comp Physiol 142:429–437

    Google Scholar 

  • Heldmaier G, Steinlechner S, Rafael J (1982) Nonshivering thermogenesis and cold resistance during seasonal acclimatization in the Djungarian hamster. J Comp Physiol 149:1–9

    Google Scholar 

  • Jagosz J, Górecki A, Pozzi-Cabaj M (1979) The bioenergetics of deposit and utilization of stored energy in the common vole. Acta Theriol 24:391–397

    Google Scholar 

  • Karasov WH (1981) Daily energy expenditure and the cost of activity in a free-living mammal. Oecologia (Berlin) 51:253–259

    Google Scholar 

  • Kendeigh SC (1974) Seasonal allocation of time and energy resources in birds. In: Paynter RA Jr (ed) Avian energetics. Nuttal Ornith Club Publ 15, Cambridge (Mass)

  • King JR, Murphy ME (1985) Periods of nutritional stress in the annual cycles of endotherms: fact or fiction? Am Zool 25:955–964

    Google Scholar 

  • Kirkwood JK (1983) A limit to metabolizable energy intake in mammals and birds. Comp Biochem Physiol 75A:1–3

    Google Scholar 

  • Kleiber M (1961) The fire of life. Wiley, New York

    Google Scholar 

  • Kozowski J, Wiegert RG (1986) Optimal allocation of energy to growth and reproduction. Theor Pop Biol 21:16–37

    Google Scholar 

  • Le Magnen J, Devos M (1982) Daily body energy balance in rats. Physiol Behav 29:807–811

    Google Scholar 

  • McNab BK (1980) Food habits, energetics, and the population biology of mammals. Am Nat 116:106–124

    Google Scholar 

  • Millar JS (1984) The role of design constraints in the evolution of mammalian reproductive rates. Acta Zool Fennica 171:133–136

    Google Scholar 

  • Myrcha A (1964) Variations in the length and weight of the alimentary tract of Clethrionomys glareolus (Schreber, 1780). Acta Theriol 9:139–148

    Google Scholar 

  • Myrcha A (1965) Length and weight of the alimentary tract of Apodemus flavicollis (Melchior, 1834). Acta Theriol 10:225–228

    Google Scholar 

  • Nagy KA, Seymour RS, Lee AK, Brathwaite R (1978) Energy and water budgets in free-living Antechinus stuartii (Marsupialia: Dasyuridae). J Mammal 59:60–68

    Google Scholar 

  • Oftedal OT (1984) Milk composition, milk yield and energy output at peak lactation: a comparative review. In: Peaker M, Vernon RG, Knight CH (eds) Physiological strategies in lactation. Symp Zool Soc London, Academic Press, London

    Google Scholar 

  • Piatkowska M, Weiner J (1987) Maximum rate of energy assimilation in the bank vole (Clethrionomys glareolus) Acta Theriol (in press)

  • Pond CM (1981) Storage. In: Townsend CR, Calow P (eds) Physiological ecology, Blackwell, Oxford

    Google Scholar 

  • Prus T (1975) Measurement of calorific value using Phillipson microbomb calorimeter. In: Grodziński W, Klekowski RZ, Duncan A (eds) Methods for ecological bioenergetics. Blackwell, Oxford

    Google Scholar 

  • Sibly RM (1981) Strategies in digestion and defecation. In: Townsend CR, Calow P (eds) Thysiological ecology, Blackwell, Oxford

    Google Scholar 

  • Schierwater B, Klingel H (1985) Food digestibility and water requirements in the Djungarian hamster Phodopus sungorus. Z Säugetierkunde 50:35–39

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry. Freeman, San Francisco

    Google Scholar 

  • Stearns SC (1976) Life-history tactics: a review of the ideas. Quart Rev Biol 51:3–47

    Google Scholar 

  • Townsend CR, Calow P (1981) Physiological ecology. An evolutionary approach to resource use. Blackwell, Oxford

    Google Scholar 

  • Weiner J (in press) Limits to energy budget and tactics in energy investments during reproduction in the Djungarian hamster (Phodopus sungorus sungorus). In: Loudon A, Racey PA (eds) Reproductive energetics in mammals. Academic Press, London

  • Weiner J, Górecki A (1981) Standard metabolic rate and thermoregulation in five species of Mongolian small mammals. J Comp Physiol 145:127–132

    Google Scholar 

  • Weiner J, Górecki A (1982) Small mammals and their habitats in the arid steppe of Central Eastern Mongolia. Pol Ecol Stud 8:7–21

    Google Scholar 

  • Wunder BA (1985) Energetics and thermoregulation. In: Tamarin RH (ed) Biology of New World Microtus Spec Publ No 8 Am Soc Mammal, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiner, J. Maximum energy assimilation rates in the Djungarian hamster (Phodopus sungorus). Oecologia 72, 297–302 (1987). https://doi.org/10.1007/BF00379282

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379282

Key words

Navigation