Skip to main content

Advertisement

Log in

The use of decalcified granulated homologous cortical bone matrix in the correction of diaphyseal bone defect

An experimental study in rabbits

  • Original Works
  • Published:
Archives of orthopaedic and traumatic surgery Aims and scope Submit manuscript

Summary

In order to investigate an alternative way to correct diaphyseal bone defects, granulated decalcified homologous cortical bone was used as a graft.

Because of the suitable anatomic arrangement, the forearm of rabbits was chosen as an experimental model of bone defect. A 2 cm long bone cylinder was removed from the diaphysis of both radii preserving the periosteum. The artificial bone defect was filled with granular decalcified bone on the right side. The left side was used as control and kept empty or filled with undecalcified granular bone.

The 18 animals were sacrificed in batches, 3, 6, and 9 weeks after the operation.

New bone formation was followed by X-rays, routine histology and incorporation of calcein blue, xylenol orange and tetracycline.

In the decalcified granular bone grafts new bone formation was already detected at the first week and 9 weeks after the graft operation there was a well developed cylindric ossicle, in 89% of the cases. In some cases a medullary canal was present.

No bone formation was found neither in the empty defects nor in the ones filled with undecalcified granular bone grafts.

Zusammenfassung

Zur Untersuchung einer Alternative für die Auffüllung diaphysärer Knochendefekte wurde homologe Kortikalis als entkalktes Knochengranulat implantiert.

Wegen der günstigen anatomischen Bedingungen wurde der Vorderlauf des Kaninchens als experimentelles Modell gewählt. Ein 2 cm langes Knochensegment wurde aus den Diaphysen beider Speichenknochen unter Erhaltung des Periosts reseziert. Am rechten Vorderlauf wurde der künstliche Knochendefekt mit entkalktem Knochengranulat aufgefüllt. Auf der linken Seite wurde zur Kontrolle der Defekt leer gelassen oder mit unentkalktem Knochengranulat aufgefullt.

Die Tiere wurden gruppenweise 3, 6 und 9 Wochen nach der Operation getötet.

Die Knochenneubildung wurde im Röntgenbild, durch Standard-Histologie und durch Markierung mit Kalzein-Blau, Xylenol-Orange und Tetracyclin überprüft.

In den Implantaten aus entkalktem Knochengranulat wurde bereits in der ersten Woche Knochenneubildung festgestellt und nach 9 Wochen fand sich in dem Defekt ein gut entwickeltes zylindrisches Knochenregenerat in 89% der Fälle. In einigen Fällen war sogar eine Markhöhle vorhanden.

Aber auch in den Defekten, die leer gelassen oder mit unentkalktem Knochengranulat aufgefüllt worden waren, ließ sich Knochenbildung erkennen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bang G, Urist MR (1967) Bone induction in excavation chambers in matrix of decalcified dentin. Arch Surg 94:781

    Google Scholar 

  • Bier A (1892) Osteoplastische Nekrotomie nebst Bemerkungen über die an der Kieler Chirurgischen Klinik ausgeführten Methoden der Nekrotomie. Arch Klin Chir 43:121 Quoted by van de Putte and Urist (1965)

    Google Scholar 

  • Bombi JA, Ribas-Mujal D, Trueta J (1978) An electron microscopic study of the origin of osteoblasts in implants of demineralized bone matrix. Clin Orthop 130:273

    Google Scholar 

  • Chalmers J, Gray DH, Rush J (1975) Observations on the induction of bone in soft tissues. J Bone Jt Surg 57-B:36

    Google Scholar 

  • Clark EP, Collip JG (1925) A study of the Tisdall method for the determination of blood serum calcium with suggested modification. J Biol Chem 63:641

    Google Scholar 

  • Deaver JB (1889) Secondary bone implantation by a modification of Senn's method. Med News 55:714 Quoted by van de Putte and Urist (1965)

    Google Scholar 

  • Gonçalves RP, Oliverio LG (1965) Electrical decalcification of bone. Mikroskopie 20:154

    Google Scholar 

  • Huggins CB, Urist MR (1970) Dentin matrix transformation: Rapid induction of alkaline phosphatase and cartilage. Science 167:896

    Google Scholar 

  • Koskinen EVS, Ryöppy SA, Lindholm TS (1972) Osteoinduction and osteogenesis in implants of allogenic bone matrix. Clin Orthop 87:116

    Google Scholar 

  • Libin BM, Ward HL, Fishman L (1975) Decalcified lyophylized bone allografts for use in human periodontal defects. J Periodont 46:51

    Google Scholar 

  • Linden GJ (1975) Bone induction in implants of decalcified bone and dentine. J Anat 119:359

    Google Scholar 

  • Mackie W (1890) Clinical observation on the healing of aseptic bone cavities by Senn's method of implantation of antiseptic decalcified bone. Med News 57:202 Quoted by van de Putte and Urist (1965)

    Google Scholar 

  • Marques AF, Leite JBF, Tanaka K, Tanaka H, Rosenblit J, Sawatani E, Giannotti O, Ueda M, Weigl DR (1979) Liofilizaçao de osso: estudo experimental. Rev Paul Med 93:49

    Google Scholar 

  • Miller AG (1890) A case of bone grafting with decalcified bone chips. Lancet 2:618 Quoted by Ray and Holloway (1957)

    Google Scholar 

  • Nade S, Burwell RG (1977) Decalcified bone as a substrate for osteogenesis. An appraisal of the interrelation of bone and marrow in combined grafts. J Bone Jt Surg 59-B:189

    Google Scholar 

  • Oikarinen J, Korhonen LK (1979) The bone inductive capacity of various bone transplanting materials used for treatment of experimental bone defects. Clin Orthop 140:208

    Google Scholar 

  • Owen M (1978) Histogenesis of bone cells. Calcif Tiss Res 25:205

    Google Scholar 

  • Puranen J (1966) Reorganization of fresh and preserved bone transplants. An experimental study in rabbits using tetracycline labelling. Acta Orthop Scand (Suppl) 92:1

    Google Scholar 

  • Putte KA van de, Urist MR (1965) Osteogenesis in the interior of intramuscular implants of decalcified bone matrix. Clin Orthop 43:257

    Google Scholar 

  • Rahn BA, Perren SM (1970) Calcein blue as a fluorescent label in bone. Experientia 26:519

    Google Scholar 

  • Rahn BA, Perren SM (1971) Xylenol orange a fluorochrome useful in polychrome sequential labeling of calcifying tissues. Stain Technol 46:125

    Google Scholar 

  • Ray RD, Holloway JA (1957) Bone implants-Preliminary report of an experimental study. J Bone Jt Surg 39-A:1119

    Google Scholar 

  • Reddi AH (1974) Bone matrix in the solid state: Geometric influence on differentiation of fibroblasts. Adv Biol Med Phys 15:1

    Google Scholar 

  • Reddi AH (1975) The matrix of rat calvarium as transformant of fibroblasts. Proc Soc Exp Biol Med 150:324

    Google Scholar 

  • Reddi AH, Huggins C (1971) Lactic/malic dehydrogenase quotients during transformation of fibroblasts into cartilage and bone. Proc Soc Exp Biol Med 137:127

    Google Scholar 

  • Reddi AH, Huggins C (1972) Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci (USA) 69:1601

    Google Scholar 

  • Reddi AH, Huggins CB (1973) Influence of geometry of transplanted tooth and bone on transformation of fibroblasts. Proc Soc Exp Biol Med 143:634

    Google Scholar 

  • Schmitt A (1893) Über Osteoplastik in klinischer und experimenteller Beziehung. Arch Klin Chir 45:401 Quoted by van de Putte and Urist (1965)

    Google Scholar 

  • Senn N (1889) On the healing of aseptic bone cavities by implantation of antiseptic decalcified bone. Am J Med Sci 98:219. Quoted by Nade and Burwell (1977)

    Google Scholar 

  • Sharrard WJW, Collins DH (1961) The fate of human decalcified bone grafts. Proc Roy Soc Med 54:1101

    Google Scholar 

  • Syttestad G, Urist MR (1979) Degradation of bone matrix morphogenetic activity by pulverization. Clin Orthop 141:281

    Google Scholar 

  • Trueta J (1968) Investigations on the origin of the osteoblast. In: Studies of the development and decay of the human frame, chapter 2. William Heinemann Medical Books Ltd, London

    Google Scholar 

  • Tuli SM, Singh AD (1978) The osteoinductive property of decalcified bone matrix—An experimental study. J Bone Jt Surg 60-B:116

    Google Scholar 

  • Urist MR (1965) Bone: formation by autoinduction. Science 150:893

    Google Scholar 

  • Urist MR (1968) Surface-decalcified allogenic bone (SDAB) implants. A preliminary report of 10 cases and 25 comparable operations with undecalcified lyophilized bone implants. Clin Orthop 56:37

    Google Scholar 

  • Urist MR (1971) Bone histogenesis and morphogenesis in implants of demineralized enamel and dentin. J Oral Surg 29:88

    Google Scholar 

  • Urist MR, Silverman BF, Büring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop 53:243

    Google Scholar 

  • Urist MR, Dowell TA (1968) Inductive substratum for osteogenesis in pellets of particulate bone matrix. Clin Orthop 61:61

    Google Scholar 

  • Urist MR, Jurist JM, Dubuc FL, Strates BS (1970) Quantitation of new bone formation in intramuscular implants of bone matrix in rabbits. Clin Orthop 68:279

    Google Scholar 

  • Urist MR, Strates BS (1971) Bone morphogenetic protein. J Dent Res (Suppl) 50:1392

    Google Scholar 

  • Urist MR, Iwata H, Ceccotti PL, Dorfman RL, Boyd SD, McDowell RM, Chien C (1973) Bone morphogenesis in implants of insoluble bone gelatin. Proc Natl Acad Sci (USA) 70:3511

    Google Scholar 

  • Urist MR, Hernandez A (1974) Excitation transfer in bone. Arch Surg 109:486

    Google Scholar 

  • Urist MR, Mikulski A, Lietze A (1979) Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci 76:1828

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volpon, J.B., Xavier, C.A.M. & Conçalves, R.P. The use of decalcified granulated homologous cortical bone matrix in the correction of diaphyseal bone defect. Arch. Orth. Traum. Surg. 99, 199–207 (1982). https://doi.org/10.1007/BF00379209

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379209

Keywords

Navigation