Skip to main content
Log in

Mechanisms of target selection by DNA-damaging chemicals: studies with enediyne anticancer drugs

  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wolffe A (1992) Chromatin Structure and Function. San Diego, Academic Press

    Google Scholar 

  2. Holde KE van (1989) Chromatin. New York, Springer-Verlag

    Google Scholar 

  3. Nelson WG, Pienta KJ, Barrack ER, Coffey DS (1986) The role of the nuclear matrix in the organization and function of DNA. Ann Rev Biophys Biophys Chem 15:457–475

    Google Scholar 

  4. Elgin SCR (1990) Chromatin structure and gene activity. Curr Opin Cell Biol 2:437–445

    Google Scholar 

  5. Xing Y, Johnson CV, Dobner PR, Lawrence JB (1993) Higher level organization of individual gene transcription and RNA splicing. Science 259:1326–1330

    Google Scholar 

  6. Nicolaou KC, Dai W-M (1991) Chemistry and Biology of the Enediyne Anticancer Antibiotics. Angew Chem Int Ed Engl 30:1387–1530

    Google Scholar 

  7. Dedon PC, Goldberg IH (1992) Free-radical mechanisms involved in the formation of sequence-dependent bistranded DNA lesions by the antitumor antibiotics bleomycin, neocarzinostatin, and calicheamicin. Chem Res Tox 5:311–332

    Google Scholar 

  8. Zein N, Sinha AM, McGahren WJ, Ellestad GA (1988) Calicheamicin γ1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 240:1198–1201

    Google Scholar 

  9. Zhao B, Konno S, Wu JM, Oronsky AL (1990) Modulation of nicotinamide adenine dinucleotide and poly(adenosine diphosphoribose) metabolism by calicheamicin γ1 in human HL-60 cells. Cancer Lett 50:141–147

    Google Scholar 

  10. Nicolaou KC, Dai W-M, Tsay S-C. Estevez VA, Wrasildo W (1992) Designed enediynes: A new class of DNA-cleaving molecules with potent and selective anticancer activity. Science 256:1172–1178

    Google Scholar 

  11. Sullivan N, Lyne L (1990) Sensitivity of fibroblasts derived from ataxia-telangiectasia patients to calicheamicin γ1 I. Mutation Res 245:171–175

    Google Scholar 

  12. Durr FE, Wallace RE, Testa RT, Kuck NA (1995) Biological activities of calicheamicin. In: Borders DB, Doyle TW (eds) Enediyne Antibiotics as Antitumor Agents. Marcel Dekker, New York, pp 127–136

    Google Scholar 

  13. Casazza AM, Kelley SL (1995) Biological properties of esperamicin and other enediyne antibiotics. In: Borders DB, Doyle TW (eds) Enediyne Antibiotics as Antitumor Agents. Marcel Dekker, New York, pp 283–299

    Google Scholar 

  14. Maeda H (1995) The clinical effects of neocarzinostatin and its polymer conjugate, SMANCS. In: Borders DB, Doyle TW (eds) Enediyne Antibiotics as Antitumor Agents. Marcel Dekker, New York, pp 363–381

    Google Scholar 

  15. Doyle TW, Borders DB (1995) Enediyne antitumor antibiotics. In: Borders DB, Doyle TW (eds) Enediyne Antibiotics as Antitumor Agents. Marcel Dekker, New York, pp 1–15

    Google Scholar 

  16. von Sonntag C (1987) The Chemical Basis of Radiation Biology. Taylor & Francis, New York

    Google Scholar 

  17. King PA, Anderson VE, Edwards JO, Gustafson G, Plumb RC, Suggs JW (1992) A stable solid that generates hydroxyl radical upon dissolution in aqueous solutions: Reaction with proteins and nucleic acid. J Am Chem Soc 114:5430–5432

    Google Scholar 

  18. Stubbe J, Kozarich JW (1987) Mechanisms of bleomycin-induced DNA degradation. Chem Rev 87:1107–1136

    Google Scholar 

  19. Price MA, Tullius TD (1992) Using hydroxyl radical to probe DNA structure. Meth Enz 212:194–218

    Google Scholar 

  20. Iliakis G (1991) The role of DNA double strand breaks in ionizing radiation-induced killing of eukaryotic cells. BioEssays 13:641–648

    Google Scholar 

  21. Aiyar J, Danishefsky SJ, Crothers DM (1992) Interaction of the aryl tetrasaccharide domain of calicheamicin γ1 I with DNA: Influence of aglycon and methidiumpropyl-EDTA.iron(II)-mediated DNA cleavage. J Am Chem Soc 114:7552–7554

    Google Scholar 

  22. Drak J, Iwasawa N, Danishefsky S, Crothers DM (1991) The carbohydrate domain of calicheamicin γ1 I determines its sequence specificity for DNA cleavage. Proc Natl Acad Sci USA 88:7464–7468

    Google Scholar 

  23. Li T, Zeng Z, Estevez VA, Baldenius KU, Joyce GF (1994) Carbohydrate-minor groove interactions in the binding of calicheamicin γ1 I to duplex DNA. J Am Chem Soc 116:3709–3715

    Google Scholar 

  24. Paloma LG, Smith JA, Chazin WJ, Nicolaou KC (1994) Interaction of calicheamicin with duplex DNA: Role of the oligosaccharide domain and identification of multiple binding modes. J Am Chem Soc 116:3697–3708

    Google Scholar 

  25. Walker S, Murnick J, Kahne DJ (1993) Structural characterization of a calicheamicin-DNA complex by NMR. J Am Chem Soc 115:7954–7961

    Google Scholar 

  26. Yu L, Mah S, Otani T, Dedon P (1995) The benzoxazolinate of C1027 confers intercalative DNA binding. J Am Chem Soc 117:8877–8878

    Google Scholar 

  27. Salzberg A, Mathur P, Dedon P (1996) The intrinsic flexibility and drug-induced bending of calicheamicin DNA targets. In: Meunier B (ed) NATO Workshop: DNA Cleavers and Chemotherapy of Cancer or Viral Diseases. Kluwer Academic Publishers, Dordrecht (in press)

    Google Scholar 

  28. Ikemoto N, Kumar RA, Dedon P, Danishefsky SJ, Patel DJ (1994) Esperamicin Al intercalates into duplex DNA from the minor groove. J Am Chem Soc 116:9387–9388

    Google Scholar 

  29. Yu L, Golik J, Harrison R, Dedon P (1994) The deoxyfucoseanthranilate of esperamicin A1 confers intercalative DNA binding and causes a switch in the chemistry of bistranded DNA lesions. J Am Chem Soc 116:9733–9738

    Google Scholar 

  30. Hayes JJ, Tullius TD, Wolffe AP (1990) The structure of DNA in a nucleosome. Proc Natl Acad Sci USA 87:7405–7409

    Google Scholar 

  31. Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A (1984) Structure of the nucleosome core particle at 7Å resolution. Nature 311:532–537

    Google Scholar 

  32. Yu L, Goldberg IH, Dedon PC (1994) Enediyne-mediated DNA damage in nuclei is modulated at the level of the nucleosome. J Biol Chem 269:4144–4151

    Google Scholar 

  33. Hurley I, Osei-Gyimah P, Archer S, Scholes CP, Lerman LS (1982) Torsional motion and elasticity of deoxyribonucleic acid double helix and its nucleosomal complexes. Biochemistry 21:4999–5009

    Google Scholar 

  34. Chaires JB, Dattagupta N, Crothers DM (1983) Binding of daunomycin to calf thymus nucleosomes. Biochemistry 22:284–292

    Google Scholar 

  35. McMurray CT, van Holde KE (1991) Binding of ethidium to the nucleosome core particle. 1. Binding and dissociation reactions. Biochemistry 30:5631–5643

    Google Scholar 

  36. McMurray CT, Small EW, van Holde KE (1991) Binding of ethidium to the nucleosome core particle. 2. Internal and external binding modes. Biochemistry 30:5644–5652

    Google Scholar 

  37. Kuo MT (1981) Preferential damage of active chromatin by bleomycin. Cancer Res 41:2439–2443

    Google Scholar 

  38. Beckmann RP, Agostino MJ, McHugh MM, Sigmund RD, Beerman TA (1987) Assessment of preferential cleavage of an actively transcribed retroviral hybrid gene in murine cells by deoxyribonuclease I, bleomycin, neocarzinostatin, or ionizing radiation. Biochemistry 26:5409–5415

    Google Scholar 

  39. Hatayama T, Yukioka M (1982) Action of neocarzinostatin on cell nuclei: Release of specific chromatin. Biochem Biophys Res Comm 104:889–896

    Google Scholar 

  40. Christner DF, Frank BL, Kozarich JW et al. (1992) Unmasking the chemistry of DNA cleavage by the esperamicins: Modulation of 4′-hydrogen abstraction and bistranded damage by the fucose-anthranilate moiety. J Am Chem Soc 114:8763–8767

    Google Scholar 

  41. Long BH, Golik J, Forenza S et al. (1989) Esperamicins, a class of potent antitumor antibiotics: mechanism of action. Proc Natl Acad Sci USA 86:2–6

    Google Scholar 

  42. Dedon PC, Salzberg AA, Xu J (1993) Exclusive production of bistranded DNA damage by calicheamicin. Biochemistry 32:3617–3622

    Google Scholar 

  43. Povirk LF, Houlgrave CW (1988) Effect of apurinic/apyrimidinic endonucleases and polyamines on DNA treated with bleomycin and neocarzinostatin: specific formation and cleavage of closely opposed lesions in complementary strands. Biochemistry 27:3850–3857

    Google Scholar 

  44. Povirk LF, Goldberg IH (1987) A role for oxidative DNA sugar damage in mutagenesis by neocarzinostatin and bleomycin. Biochimie 69:815–823

    Google Scholar 

  45. Kumada Y, Miwa T, Naoi N et al. (1983) A degradation product of the chromophore of auromomycin. J Antibiot 36:200–202

    Google Scholar 

  46. Minami Y, Yoshida K-i, Azuma R, Saeki M, Otani T (1993) Structure of an aromatization product of C-1027 chromophore. Tetrahedron Lett 34:2633–2636

    Google Scholar 

  47. Yoshida K-i, Minami Y, Azuma R, Saeki M, Otani T (1993) Structure and cycloaromatization of a novel enediyne, C-1027 chromophore. Tetrahedron Lett 34:2637–2640

    Google Scholar 

  48. Yu L, Salzberg AA, Dedon PC (1995) New insights into calicheamicin-DNA interactions derived from a model nucleosome system. Bioorg Med Chem 3:729–741

    Google Scholar 

  49. Kuduvalli PN, Townsend CA, Tullius TD (1995) Cleavage by calicheamicin γ1 I of DNA in a nucleosome formed on the 5S RNA gene of Xenopus borealis. Biochemistry 34:3899–3906

    Google Scholar 

  50. Mah SC, Price MA, Townsend CA, Tullius TD (1994) Features of DNA recognition for oriented binding and cleavage by calicheamicin. Tetrahedron 50:1361–1378

    Google Scholar 

  51. Myers AG, Cohen SB, Kwon BM (1994) A study of the reaction of calicheamicin g1 with glutathione in the presence of double-stranded DNA. J Am Chem Soc 116:1255–1271

    Google Scholar 

  52. Grzeskowiak K, Goodsell DS, Kaczor-Grzeskowiak M, Cascio D, Dickerson RE (1993) Crystallographic analysis of C-C-A-A-G-C-T-T-G-G and its implications for bending of B-DNA. Biochemistry 32:8923–8931

    Google Scholar 

  53. Koo H-S, Drak J, Rice JA, Crothers DM (1990) Determination of the extent of DNA bending by an adenine-thymine tract. Biochemistry 29:4227–4234

    Google Scholar 

  54. Hagerman PJ (1990) Sequence-directed curvature of DNA. Annu Rev Biochem 59:755–781

    Google Scholar 

  55. Moyer R, Marien K, van Holde K, Bailey G (1989) Site-specific aflatoxin B1 adduction of sequence-positioned nucleosome core particles. J Biol Chem 264:12226–12231

    Google Scholar 

  56. Thrall BD, Mann DB, Smerdon MJ, L, SD (1994) Nucleosome structure modulates benzo[a]pyrene epoxide adduct formation. Biochemistry 33:2210–2216

    Google Scholar 

  57. Friedberg EC, Walker GC, Siede W (1995) DNA Repair and Mutagenesis. ASM Press, Washington, D.C.

    Google Scholar 

  58. Smerdon MJ (1991) DNA repair and the role of chromatin structure. Curr Opin Cell Biol 3:422–428

    Google Scholar 

  59. Sun D, Lin CH, Hurley LH (1993) A-tract and (+)-CC-1065-induced DNA bending of DNA. Comparison of structural features using non-denaturing gel analysis, hydroxyl-radical footprinting, and high-field NMR. Biochemistry 32:4487–4495

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dedon, P.C. Mechanisms of target selection by DNA-damaging chemicals: studies with enediyne anticancer drugs. Int Arch Occup Environ Health 68, 408–414 (1996). https://doi.org/10.1007/BF00377861

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00377861

Keywords

Navigation