Skip to main content
Log in

On the osmoregulation in Atriplex hymenelytra (Torr.) Wats. (Chenopodiaceae)

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Aspects of osmoregulation were studied in leaves of irrigated and nonirrigated plants of Atriplex hymenelytra (Torr.) Wats. (Chenopodiaceae) from their natural habitat in Death Valley, California. Using a set of several data concentrations of inorganic electrolytes (Na+, K+, Cl-) and of oxalate in the mesophyll of this salt secreting species were calculated. The osmotic potential resulting from these solutes (under consideration of an empirically estimated osmotic coefficient) is in good agreement with field measurements of the overall osmotic potential in the leaf mesophyll as determined by pressure-volume curves. This indicates that these 4 electrolytes are the main osmotically active solutes. Oxalate is present in comparably high concentrations and is used to achieve ion balance.

Organic solutes analyzed include soluble carbohydrates (mono-, di- and oligosaccharides), amino- and organic acids as well as glycinebetaine. Of these, organic- and amino acids (including proline) contribute only little to osmoregulation. Soluble carbohydrates and especially glycinebetaine exhibit concentrations high enough for generating considerable osmotic potentials, at least if these compounds are regarded to be restricted to the cytoplasm acting as compatible solutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert R (1982) Halophyten. In: Kinzel H (ed) Pflanzenökologie und Mineralstoffwechsel Ulmer, Stuttgart, pp 33–204

    Google Scholar 

  • Albert R, Popp M (1978) Zur Rolle der löslichen Kohlenhydrate in Halophyten des Neusiedlersee-Gebietes (Österreich). Oecol Plant 13:27–42

    Google Scholar 

  • Batanouny KH, Ebeid MM (1981) Diurnal changes in proline content of desert plants. Oecologia (Berlin) 51:250–252

    Google Scholar 

  • Bennert HW (1981) Untersuchungen zum Kohlenstoffhaushalt von Atriplex hymenelytra (Torr.) Wats. (Chenopodiaceae) unter Wasserstreß. Verhandl Ges Ökol 9:129–134

    Google Scholar 

  • Bennert HW, Mooney HA (1979) The water relations of some desert plants in Death Valley, California. Flora 168:405–427

    Google Scholar 

  • Bennert HW, Schmidt B (1983) Untersuchungen zur Salzabscheidung bei Atriplex hymenelytra (Torr.) Wats (Chenopodiaceae). Flora 174:341–355

    Google Scholar 

  • Boehringer Mannheim GmbH (1983) Methoden der enzymatischen Lebensmittelanalytik mit Einzelreagentien. Mannheim

  • Caldwell MM (1974) Physiology of desert halophytes. In: Reimold RJ, Queen WH (eds) Ecology of halophytes. Academic Press, New York London, pp 355–378

    Google Scholar 

  • Cavalieri AJ, Huang AHC (1979) Evaluation of proline accumulation in the adaptation of diverse species of marsh halophytes to the saline environment. Amer J Bot 66:307–312

    Google Scholar 

  • Cavalieri AJ, Huang AHC (1981) Accumulation of proline and glycinebetaine in Spartina alterniflora Loisel. in response to NaCl and nitrogen in the marsh. Oecologia (Berlin) 49:224–228

    Google Scholar 

  • Flowers TJ, Hall JL (1978) Salt tolerance in the halophyte, Suaeda maritima (L.) Dum.: The influence of the salinity of the culture solution on the content of various organic compounds. Ann Bot 42:1057–1063

    Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Ann Rev Plant Physiol 28:89–121

    Google Scholar 

  • Gorham J, Hughes LL, Wyn Jones RG (1980) Chemical composition of salt-marsh plants from Ynys Môn (Anglesey): the concept of physiotypes. Plant Cell Environment 3:309–318

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanism of salt tolerance in nonhalophytes. Ann Rev Plant Physiol 31:149–190

    Google Scholar 

  • Harvey DMR, Hall JL, Flowers TJ, Kent B (1981) Quantitative ion localization within Suaeda maritima leaf mesophyll cells. Planta 151:555–560

    Google Scholar 

  • Hellebust JA (1976) Osmoregulation. Ann Rev Plant Physiol 27:485–505

    Google Scholar 

  • Hitz WD, Hanson AD (1980) Determination of glycine betaine by pyrolysis-gas chromatography in cereals and grasses. Phytochem 19:2371–2374

    Google Scholar 

  • Holländer H (1979) Inhibitoren der Phenylpropansynthese in Fagopyrum esculentum Moench. Diss Bochum

  • Huber W, Eder A (1982) Prolin- und Glycinbetain-Anhäufung in Blättern und Sproßachsen von Euphorbia trigona und deren Bedeutung bei mangelnder Wasserversorgung. Biochem Physiol Pflanz 177:184–191

    Google Scholar 

  • Jefferies RL, Rudmik T, Dillon EM (1979) Responses of halophytes to high salinities and low water potentials. Plant Physiol 64:989–994

    Google Scholar 

  • Kaplan A, Gale J (1974) Modification of the pressure-bomb technique for measurement of osmotic potential in halophytes. J Exper Bot 25:663–668

    Google Scholar 

  • Lambers H, Blacquière T, Stuiver B (1981) Interactions between osmoregulation and the alternative respiratory pathway in Plantago coronopus as effected by salinity. Physiol Plant 51:63–68

    Google Scholar 

  • Larher F, Jolivet Y, Briens M, Goas M (1982) Osmoregulation in higher plant halophytes: Organic nitrogen accumulation in glycine betaine and proline during the growth of Aster tripolium and Suaeda macrocarpa under saline conditions. Plant Sci Letters 24:201–210

    Google Scholar 

  • Neales TF, Sharkey PJ (1981) Effect of salinity on growth and on mineral and organic constituents of the halophyte Disphyma australe (Solan.) J.M. Black. Aust J Plant Physiol 8:165–179

    Google Scholar 

  • Osmond CB (1963) Oxalates and ionic equilibria in Australian saltbushes (Atriplex). Nature 198:503–504

    Google Scholar 

  • Osmond CB, Björkman O, Anderson DJ (1980) Physiological processes in plant ecology. Toward a synthesis with Atriplex. Ecological studies, vol 36. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pourrat Y, Hubac C (1974) Comparaison des mécanismes de la résistance à la sécheresse chez deux plantes désertiques: Artemisia herba alba Asso et Carex pachystylis (J. Gay) Asch. et Graebn. Physiol Vég 12:135–147

    Google Scholar 

  • Roberts SW, Knoerr KR (1977) Components of water potential estimated from xylem pressure measurements in five tree species. Oecologia (Berlin) 28:191–202

    Google Scholar 

  • Singh G, Rai VK (1981) Free proline accumulation and drought resistance in Cicer arietinum L. Biol Plant 23:86–90

    Google Scholar 

  • Skujins J (1981) Nitrogen cycling in arid ecosystems. In: Clark FE, Rosswall T (eds) Terrestrial nitrogen cycles. Ecol Bull 33:474–491

    Google Scholar 

  • Stelzer R (1981) Ion localization in the leaves of Puccinellia peisonis. Z Pflanzenphysiol 103:27–36

    Google Scholar 

  • Stewart CR (1978) Role of carbohydrates in proline accumulation in wilted barley leaves. Plant Physiol 61:775–778

    Google Scholar 

  • Storey R, Wyn Jones RG (1977) Quaternary ammonium compounds in plants in relation to salt resistance. Phytochem 16:447–453

    Google Scholar 

  • Storey R, Wyn Jones RG (1978) Salt stress and comparative physiology in the Gramineae. III. Effect of salinity upon ion relations and glycinebetaine and proline levels in Spartina x townsendii. Aust J Plant Physiol 5:831–838

    Google Scholar 

  • Storey R, Wyn Jones RG (1979) Responses of Atriplex spongiosa and Suaeda monoica to salinity. Plant Physiol 63:156–162

    Google Scholar 

  • Storey R, Ahmad N, Wyn Jones RG (1977) Taxonomic and ecological aspects of the distribution of glycinebetaine and related compounds in plants. Oecologia (Berlin) 27:319–332

    Google Scholar 

  • Treichel S (1979) Der Einfluß von NaCl auf den Prolinstoffwechsel bei Halophyten. Ber Deutsch Bot Ges 92:73–85

    Google Scholar 

  • Tymms MJ, Gaff DF (1979) Proline accumulation during water stress in resurrection plants. J Exper Bot 30:165–168

    Google Scholar 

  • Tyree MT, Jarvis PG (1982) Water in tissues and cells. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II Water relation and carbon assimilation (=Encyclopedia of plant physiology NS vol 12B). Springer, Berlin Heidelberg New York, pp 35–77

    Google Scholar 

  • Walter H (1968) Die Vegetation der Erde in öko-physiologischer Betrachtung. Bd II Die gemäßigten und arktischen Zonen. Fischer, Stuttgart

    Google Scholar 

  • Wyn Jones RG, Storey R (1978) Salt stress and comparative physiology in the Gramineae. II. Glycinebetaine and proline accumulation in two salt- and water-stressed barley cultivars. Aust J Plant Physiol 5:817–829

    Google Scholar 

  • Yeo AR (1981) Salt tolerance in the halophyte Suaeda maritima L. Dum.: Intracellular compartmentation of ions. J Exper Bot 32:487–497

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennert, H.W., Schmidt, B. On the osmoregulation in Atriplex hymenelytra (Torr.) Wats. (Chenopodiaceae). Oecologia 62, 80–84 (1984). https://doi.org/10.1007/BF00377377

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00377377

Keywords

Navigation