Skip to main content

The ascendancy of the Laplace transform and how it came about

Abstract

The modern Laplace transform is relatively recent. It was first used by Bateman in 1910, explored and codified by Doetsch in the 1920s and was first the subject of a textbook as late as 1937. In the 1920s and 1930s it was seen as a topic of front-line research; the applications that call upon it today were then treated by an older technique — the Heaviside operational calculus. This, however, was rapidly displaced by the Laplace transform and by 1950 the exchange was virtually complete. No other recent development in mathematics has achieved such ready popularisation and acceptance among the users of mathematics and the designers of undergraduate curricula.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Angelini, A. M., Calcolo operatorio e studio dei circuiti elettrici in regime transitori (Milan 1935).

  2. 2.

    Aprile, G., Elementi di calcolo operatorio funzionale (Rome: Ist. Poligrafico di Stato Libreria, 1943).

    Google Scholar 

  3. 3.

    Bateman, H., The control of an elastic fluid. Bull. Amer. Math. Soc. 51 (1945), 601–646. (See footnote 111.)

    Google Scholar 

  4. 4.

    Bell, E. T., The Development of Mathematics (New York: McGraw-Hill, 1940). (See Chapter 19.)

    Google Scholar 

  5. 5.

    Berg, E. J., Heaviside's Operational Calculus as applied to Engineering and Physics (New York: McGraw-Hill, 1929; 2nd Edn., 1936).

    Google Scholar 

  6. 6.

    Berg, L., Introduction to the Operational Calculus (Amsterdam: North Holland, 1967).

    Google Scholar 

  7. 7.

    Bernstein, F., Ueber die numerische Ermittlung verborgener Periodizitäten. Z. ang. Math. Mech. 7 (1927), 441–444.

    Google Scholar 

  8. 8.

    Bernstein, F. & Doetsch, G., Die Integralgleichung der elliptischen Thetanullfunktion. Dritte Note. Dritte Herleitung durch den verallgemeinerten Volterraprozess und weitere Beispiele (Mittag-Lefflersche Funktion und Beltramische Integralgleichung). Nach. K. Gesell. Wissens. Göttingen. Math.-Phys. Klasse (1921, 1922), 32–46.

  9. 9.

    Boole, G., A Treatise on Differential Equations (Cambridge: Macmillan, 1859; 2nd Edn., ibid. 1865; 2nd Edn. reprinted as 5th Edn., New York: Chelsea, n.d. [1959?]). Pagination given in the text is from the 2nd Edn.

    Google Scholar 

  10. 10.

    Bromwich, T. J. I'A., Normal coordinates in dynamical systems. Proc. Lond. Math. Soc. 2 ser. 15 (1914, 1916), 401–448.

    Google Scholar 

  11. 11.

    Bromwich, T. J. I'A., Note on Prof. Carslaw's paper. Math. Gaz. 14 (1928), 226–228.

    Google Scholar 

  12. 12.

    Bromwich, T. J. I'A., An example of operational methods. Phil. Mag. 7 ser. 6 (1928), 922–923.

    Google Scholar 

  13. 13.

    Broadbent, T. A. A., Review of Heaviside's Operational Calculus as applied to Engineering and Physics (Ref. [5]) by E. J. Berg. Math. Gaz. 21 (1937), 309–310.

    Google Scholar 

  14. 14.

    Bush, V., Operational Circuit Analysis (New York: Wiley, 1929).

    Google Scholar 

  15. 15.

    Carslaw, H. S., Introduction to the Mathematical Theory of Conduction of Heat in Solids. (London: Macmillan, 1921; Reprinted, New York: Dover, 1945). This work is listed as the 2nd Edn., being a reworking of part of a 1906 book published under a different title.

    Google Scholar 

  16. 16.

    Carslaw, H. S., Operational methods in mathematical physics (Essay-review of Operational Methods in Mathematical Physics (Ref. [69]) by H. Jeffreys). Math. Gaz. 14 (1928), 216–225.

    Google Scholar 

  17. 17.

    Carslaw, H. S., Historical note on Heaviside's operational method. Math. Gaz. 22 (1938), 485.

    Google Scholar 

  18. 18.

    Carslaw, H. S., Operational methods in mathematical physics. Math. Gaz. 22 (1938), 264–280.

    Google Scholar 

  19. 19.

    Carslaw, H. S., A simple application of the Laplace transformation. Phil. Mag. 7 ser. 30 (1940), 414–417.

    Google Scholar 

  20. 20.

    Carslaw, H. S., Note on the paper “The Temperature Distribution around a Spherical Hole in an Infinite Conducting Medium” by Messrs. Pugh and Harris in the Phil. Mag. p. 661 (Sept. 1942). Phil. Mag. 7 ser. 34 (1943), 288.

    Google Scholar 

  21. 21.

    Carslaw, H. S. & J. C. Jaeger, Operational Methods in Applied Mathematics (Oxford: Clarendon, 1941).

    Google Scholar 

  22. 22.

    Carslaw, H. S. & J. C. Jaeger, Some problems in the mathematical theory of the conduction of heat. Phil. Mag. 7 ser. 26 (1938), 473–495.

    Google Scholar 

  23. 23.

    Carslaw, H. S. & J. C. Jaeger, The determination of Green's function for line sources for the equation of conduction of heat in cylindrical coordinates by the Laplace transformation. Phil. Mag. 7 ser. 31 (1941), 204–208.

    Google Scholar 

  24. 24.

    Carson, J. R., Electric Circuit Theory and the Operational Calculus (New York: Chelsea, 1926; 2nd Edn., 1952; German version, 1929).

    Google Scholar 

  25. 25.

    Carter, G. W., The Simple Calculation of Electrical Transients: an Elementary Treatment of Transient Problems in Linear Electrical Circuits by Heaviside's Operational Methods (London: Macmillan, 1944).

    Google Scholar 

  26. 26.

    Churchill, R. V., A heat conduction problem introduced by C. J. Tranter. Phil. Mag. 7 ser. 31 (1941), 81–87.

    Google Scholar 

  27. 27.

    Churchill, R. V., Modern Operational Mathematics in Engineering (New York: McGraw-Hill, 1944; 2nd Edn. titled Operational Mathematics, 1958).

    Google Scholar 

  28. 28.

    Cohen, L., Heaviside's Electrical Circuit Theory (New York: McGraw-Hill, 1928).

    Google Scholar 

  29. 29.

    Cooper, J. L. B., Heaviside and the operational calculus. Math. Gaz. 36 (1952), 5–18.

    Google Scholar 

  30. 30.

    Coulthard, W. B., Transients in Electric Circuits using the Heaviside Operational Calculus (London: Pitman, 1946).

    Google Scholar 

  31. 31.

    Cromwell, P. C., A construction theorem for evaluating operational expressions having a finite number of different roots. Trans. Amer. Inst. Elec. Eng. 60 (1941), 273–276. See also p. 676 for a comment by E. Weber.

    Google Scholar 

  32. 32.

    Dahr, K., A Course of Integrational and Operational Calculus with Applications to Physics and Electrotechnics (Stockholm: Lindstahl, 1939; German edition, ibid. 1939).

    Google Scholar 

  33. 33.

    Dalton, J. P., Symbolic Operators (Johannesberg: Witwatersrand, 1954).

    Google Scholar 

  34. 34.

    Deakin, M. A. B., The development of the Laplace transform, 1737–1937: I. Euler to Spitzer, 1737-1880. Arch. Hist. Ex. Sci. 25 (1981), 343–390.

    Google Scholar 

  35. 35.

    Deakin, M. A. B., The development of the Laplace transform, 1737-1937: II. Poincaré to Doetsch, 1880-1937. Arch. Hist. Ex. Sci. 26 (1982), 351–381.

    Google Scholar 

  36. 36.

    Deakin, M. A. B., Motivating the Laplace transform. Int. J. Math. Ed. Sci. Tech. 12 (1981), 415–418.

    Google Scholar 

  37. 37.

    Deakin, M. A. B., Operational calculus and the Laplace transform. Aust. Math. Soc. Gaz. 17 (1990), 133–139. Corrigendum, ibid., 171.

    Google Scholar 

  38. 38.

    Deakin, M. A. B., Laplace transforms for superexponential functions. To appear.

  39. 39.

    Dhar, S. C., On the operational representation of M-functions of the confluent hypergeometric type. Phil. Mag. 7 ser. 25 (1938), 416–425.

    Google Scholar 

  40. 40.

    Doetsch, G., Review of Elektrische Ausgleichsvorgänge und Operatorenrechnung (German version of Ref. [24]) Jahresb. Deutsche. Math. Ver. 39 (1930), Literarisches 105–109. An English translation is included in Ref. [126].

    Google Scholar 

  41. 41.

    Doetsch, G., Theorie und Anwendung der Laplace-Transformation (Berlin: Springer, 1937; 2nd Edn, New York: Dover, 1943).

    Google Scholar 

  42. 42.

    Doetsch, G., Handbuch der Laplace-Transformation (Basel: Birkhauser; Bd. I, 1950; Bd. II, 1955; Bd. III. 1956).

    Google Scholar 

  43. 43.

    Doetsch, G., Einfuhrung in Theorie und Anwendung der Laplace-Transformation (Berlin: Springer, 1970; English translation, ibid. 1974).

    Google Scholar 

  44. 44.

    Droste, H. W., Die Lösung angewandter Differentialgleichungen mittels Laplacescher Transformation (Neuere Rechenverfahren der Technik 1) (Berlin: Mittler, 1939).

    Google Scholar 

  45. 45.

    Erdélyi, A., Inversion formulae for the Laplace Transformation. Phil. Mag. 7 ser. 34 (1943), 533–537.

    Google Scholar 

  46. 46.

    Erdélyi, A., Harry Bateman, 1882-1946. Obit. Not. Fel. Roy. Soc. 5 (1948), 590–618. See p. 598.

    Google Scholar 

  47. 47.

    Ertel, H., Elemente der Operatorenrechnung mit geophysikalischen Anwendungen (Berlin: Springer, 1940).

    Google Scholar 

  48. 48.

    Feller, W., An Introduction to Probability Theory and its Applications, Vol. II (New York: Wiley, 1966).

    Google Scholar 

  49. 49.

    Gardner, M. F., Operational Calculus. Elect. Eng. 53 (1934), 1339–1347.

    Google Scholar 

  50. 50.

    Gardner, M. F. & J. L. Barnes, Transients in Linear Systems, Volume 1: Lumped Constant Systems (New York: Wiley, 1942).

    Google Scholar 

  51. 51.

    Ghizzetti, A., Calcolo simbolico: La trasformazione di Laplace e il calcolo simbolico degli elettrotecnici (Bologna: Zanichelli, 1943).

    Google Scholar 

  52. 52.

    Grünwald, E., Lösungsverfahren der Laplace-Transformation für Ausgleichsvorgänge in linearen Netzen angewandt auf selbsttätige Regelungen. Arch. Elektrotech. 35 (1941), 379–400.

    Google Scholar 

  53. 53.

    Hameister, E., Laplace-Transformation: eine Einführung für Physiker Elektro-Maschinerie und Bauingenieure (Munich: Oldenbourg, 1943; reprinted Ann Arbor: Edwards, 1946).

    Google Scholar 

  54. 54.

    Heaviside, O., Electromagnetic Theory, Vol. III (London: ‘The Electrician’, 1912; reprinted as 3rd Edn., New York: Chelsea, 1971).

    Google Scholar 

  55. 55.

    Herreng, P., Les applications du calcul opérational (Paris: Masson, 1944).

    Google Scholar 

  56. 56.

    Higgins, T. J., History of the operational calculus as used in electric circuit analysis. Elec. Eng. 68 (1949), 42–45.

    Google Scholar 

  57. 57.

    Horn, J., Integration linearer Differentialgleichungen durch Laplacesche Integrale. Math. Z. 49 (1944), 339–350, 684–701.

    Google Scholar 

  58. 58.

    Howell, W. T., On some operational representations of products of parabolic cylinder functions and products of Laguerre polynomials. Phil. Mag. 7 ser. 24 (1937), 1082–1093.

    Google Scholar 

  59. 59.

    Howell, W. T., A note on Laguerre polynomials. Phil. Mag. 7 ser. 28 (1939), 287–288.

    Google Scholar 

  60. 60.

    Howell, W. T., A note on the solution of some partial differential equations in the finite domain. Phil. Mag. 7 ser. 28 (1939), 396–402.

    Google Scholar 

  61. 61.

    Humbert, P., Le calcul symbolique (Actualités scientifiques et industrielles 147) (Paris: Hermann, 1934).

    Google Scholar 

  62. 62.

    Ince, E. L., Ordinary Differential Equations (London: Longmans, 1927; Reprinted, New York: Dover, 1965).

    Google Scholar 

  63. 63.

    Itoo, T., Pseudo-operational calculus. Tôhoku Math. J. 42 (1936), 230–247.

    Google Scholar 

  64. 64.

    Jaeger, J. C., Magnetic screening by hollow circular cylinders. Phil. Mag. 7 ser. 29 (1940), 18–31.

    Google Scholar 

  65. 65.

    Jaeger, J. C., Heat conduction in composite circular cylinders. Phil. Mag. 7 ser. 32 (1941), 324–335.

    Google Scholar 

  66. 66.

    Jaeger, J. C., Heat conduction in a wedge, or an infinite cylinder whose cross-section is a circle or a sector of a circle. Phil. Mag. 7 ser. 33 (1942), 527–536.

    Google Scholar 

  67. 67.

    Jaeger, J. C., Horatio Scott Carslaw, 1870–1954; A centennial oration (Ed. H. O. Lancaster). Aust. Math. Soc. Gaz. 8 (1981), 1–18.

    Google Scholar 

  68. 68.

    Janet, P., Le calcul symbolique d'Heaviside et ses applications à l'électrotechnique (Paris: Gauthier, 1938).

    Google Scholar 

  69. 69.

    Jeffreys, H., Operational Methods in Mathematical Physics (Cambridge University Press, 1927; various later editions under different titles).

  70. 70.

    Jeffreys, H., [Reply to Carslaw.] Math. Gaz. 14 (1928), 225–226.

    Google Scholar 

  71. 71.

    Jeffreys, H., Heaviside's pure mathematics. In The Heaviside Centenary Volume (London: The Institution of Electrical Engineers, 1950), 90–92.

    Google Scholar 

  72. 72.

    Josephs, H. J., Heaviside's Electric Circuit Theory (London: Methuen; Brooklyn, N. Y.: Chemical Publ., 1946).

    Google Scholar 

  73. 73.

    Koppelmann, E., The calculus of operations and the rise of abstract algebra. Arch. Hist. Ex. Sci. 8 (1972), 155–242.

    Google Scholar 

  74. 74.

    Krabbe, G., Operational Calculus (Berlin: Springer, 1970).

    Google Scholar 

  75. 75.

    Koziumi, S., On Heaviside's operational solution of a Volterra's integral equation when its nucleus is a function of (x − ξ). Phil. Mag. 7 ser. 11(1931), 432–441.

    Google Scholar 

  76. 76.

    Koziumi, S., A new method of evaluation of the Heaviside operational expression by Fourier series. Phil. Mag. 7 ser. 19 (1935), 1061–1076.

    Google Scholar 

  77. 77.

    Lévy, P., Le calcul symbolique d'Heaviside. (Paris: Gauthier, 1928).

    Google Scholar 

  78. 78.

    Lowan, A. N., On the cooling of a radioactive sphere. Phys. Rev. 44 (1933), 769–775.

    Google Scholar 

  79. 79.

    Lowan, A. N., On the operational treatment of certain mechanical and electrical problems. Phil. Mag. 7 ser. 17 (1934), 1134–1144.

    Google Scholar 

  80. 80.

    Lowan, A. N., On the operational determination of Green's functions in the theory of heat conduction. Phil. Mag. 7 ser. 24 (1937), 62–70.

    Google Scholar 

  81. 81.

    Lowan, A. N., On wave-motion for infinite domains. Phil. Mag. 7 ser. 24 (1938), 340–360.

    Google Scholar 

  82. 82.

    Lowan, A. N., On the problem of wave-motion for subinfinite domains. Phil. Mag. 7 ser. 27 (1939), 182–194. Corrigendum. ibid., 769.

    Google Scholar 

  83. 83.

    Lowan, A. N., On some problems in the diffraction of heat. Phil. Mag. 7 ser. 29 (1940), 93–99.

    Google Scholar 

  84. 84.

    Lowan, A. N., On the problem of wave-motion for the wedge of an angle. Phil. Mag. 7 ser. 31 (1941), 373–381.

    Google Scholar 

  85. 85.

    Lowry, H. V., Operational calculus — Part I. The definition of an operational representation of a function and some properties of the operator derived from this definition. Phil. Mag. 7 ser. 13 (1932), 1033–1048.

    Google Scholar 

  86. 86.

    Lowry, H. V., Operational calculus — Part II. The values of certain integrals and the relationship between various polynomials and series obtained by operational methods. Phil. Mag. 7 ser. 13 (1932), 1144–1163.

    Google Scholar 

  87. 87.

    Luikov, A., The application of the Heaviside-Bromwich operational method to the solution of a problem in heat conduction. Phil. Mag. 7 ser. 22 (1936), 239–248.

    Google Scholar 

  88. 88.

    Lützen, J., Heaviside's operational calculus and the attempts to rigorise it. Arch. Hist. Ex. Sci. 21 (1979), 161–200.

    Google Scholar 

  89. 89.

    McLachlan, N. W., Operational systems. Phil. Mag. 7 ser. 25 (1938), 259–269.

    Google Scholar 

  90. 90.

    McLachlan, N. W., Submarine cable problems solved by contour integration. Math. Gaz. 22 (1938), 37–41.

    Google Scholar 

  91. 91.

    McLachlan, N. W., Review of Elementary Theory of Operational Mathematics by E. Stephens (Ref. [121]). Math. Gaz. 22 (1938), 201–204.

    Google Scholar 

  92. 92.

    McLachlan, N. W., Historical note on Heaviside's operational method. Math. Gaz. 22 (1938), 255–260.

    Google Scholar 

  93. 93.

    McLachlan, N. W., [Reply to Carslaw.] Math. Gaz. 22 (1938), 485.

    Google Scholar 

  94. 94.

    McLachlan, N. W., Operational forms and contour integrals for Bessel functions with argument a√t2−b2. Phil. Mag. 7 ser. 26 (1938), 394–408.

    Google Scholar 

  95. 95.

    McLachlan, N. W., Operational forms and contour integrals for Struve and other functions. Phil. Mag. 7 ser. 26 (1938), 457–473.

    Google Scholar 

  96. 96.

    McLachlan, N. W., Operational form of f(t) for a finite interval with application to impulses. Phil. Mag. 7 ser. 26 (1938), 695–704.

    Google Scholar 

  97. 97.

    McLachlan, N. W., Complex Variable and Operational Calculus with Technical Applications (Cambridge University Press, 1939; various later editions under different titles).

  98. 98.

    McLachlan, N. W. & P. Humbert, Formulaire pour le calcul symbolique (Paris: Gauthier, 1941).

    Google Scholar 

  99. 99.

    McLachlan, N. W. & A. L. Meyers, Operational forms for Bessel and Struve functions. Phil. Mag. 7 ser. 23 (1937), 918–925.

    Google Scholar 

  100. 100.

    Mersman, W. A., Preliminary draft for an English translation of Theorie und, Anwendungen der Laplace-Transformation by G. Doetsch (Ref. [41]) (Berkeley: Department of Mechanical Engineering, University of California, 1939).

    Google Scholar 

  101. 101.

    Mikusiński, J., Rachunek operatorów (Warsaw: Państowe Wydawnictwo Naukowe, 1957; English translation, Operational Calculus, Oxford: Pergamon, 1959).

    Google Scholar 

  102. 102.

    Moore, D. H., Heaviside Operational Calculus (New York: Elsevier, 1971).

    Google Scholar 

  103. 103.

    Nathan, H., Article on Bernstein in Dictionary of Scientific Biography Vol. II (Ed. C. C. Gillespie et al.) (New York: Scribner, 1970), 58–59.

    Google Scholar 

  104. 104.

    Pipes, L. A., Operational and matrix methods in linear variable networks. Phil. Mag. 7 ser. 25 (1938), 585–600.

    Google Scholar 

  105. 105.

    Pipes, L. A., The operational theory of solid friction. Phil. Mag. 7 ser. 25 (1938), 950–961.

    Google Scholar 

  106. 106.

    Pipes, L. A., The operational calculus I. J. App. Phys. 10 (1939), 172–180.

    Google Scholar 

  107. 107.

    Pipes, L. A., The operational calculus II, J. App. Phys. 10 (1939), 258–264.

    Google Scholar 

  108. 108.

    Pipes, L. A., The operational calculus III. J. App. Phys. 10 (1939), 301–311.

    Google Scholar 

  109. 109.

    van der Pol, B., A simple proof and an extension of Heaviside's operational calculus for invariable systems. Phil. Mag. 7 ser. 7 (1929), 1153–1162.

    Google Scholar 

  110. 110.

    van der Pol, B., On the operational solution of linear differential equations and an investigation of the properties of these equations. Phil. Mag. 7 ser. 8 (1929), 861–898.

    Google Scholar 

  111. 111.

    van der Pol, B. & H. Bremmer, Operational Calculus Based on the Two-Sided Laplace Integral (Cambridge University Press, 1950).

  112. 112.

    Potier, R. & J. Laplume, Le calcul symbolique et quelques applications à la physique et à l'électricité (Actualités scientifiques et industrielles 947) (Paris: Hermann, 1943).

    Google Scholar 

  113. 113.

    Pugh, H. Ll. D. & A. J. Harris, The temperature distribution around a spherical hole in an infinite conducting medium. Phil. Mag. 7 ser. 33 (1942), 661–666. Corrigendum, ibid. 34 (1943), 288, in reply to a note by Carslaw.

    Google Scholar 

  114. 114.

    Robertson, B. L., Operational method of circuit analysis. Elec. Eng. 54 (1935), 1037–1045.

    Google Scholar 

  115. 115.

    Russell, J. B., Heaviside's direct operational calculus. Elec. Eng. 61 (1942), 84–88.

    Google Scholar 

  116. 116.

    Schlömilch, O., Review of Studien über die Integration linearer Differentialgleichungen by S. Spitzer. Z. Math. Phys. (Schlömilch) 5 (1860), Literaturzeitung 17–18.

    Google Scholar 

  117. 117.

    Seeley, W. J., An Introduction to the Operational Calculus (Scranton, Pa.: International Textbook Co., 1941).

    Google Scholar 

  118. 118.

    Spiegel, M., Theory and Problems of Laplace Transforms (New York: McGraw-Hill (Schaum), 1965).

    Google Scholar 

  119. 119.

    von Stachó, T., Operationskalkül von Heaviside und Laplacesche Transformation. Acta Szeged 3 (1927), 107–120.

    Google Scholar 

  120. 120.

    Starr, A. T., Ballistic and perfect balances in bridges treated by the operational calculus. Phil. Mag. 7 ser. 12 (1931), 265–280.

    Google Scholar 

  121. 121.

    Stephens, E., Elementary Theory of Operational Mathematics (New York: McGraw-Hill, 1937).

    Google Scholar 

  122. 122.

    Sumpner, W. E., Impulse functions. Phil. Mag. 7 ser. 11 (1931), 345–368.

    Google Scholar 

  123. 123.

    Tranter, C. J., Note on a problem in the conduction of heat. Phil. Mag. 7 ser. 28 (1939), 579–583. Corrigendum, ibid. 31 (1941), 432.

    Google Scholar 

  124. 124.

    Tranter, C. J., The application of the Laplace transformation to a problem in elastic vibrations. Phil. Mag. 7 ser. 33 (1942), 614–622.

    Google Scholar 

  125. 125.

    Turney, T. H., Heaviside's Operational Calculus Made Easy (London: Chapman and Hall, 1944; 2nd Edn. 1946).

    Google Scholar 

  126. 126.

    Vandenberg, A.-M. & M. A. B. Deakin, Operational calculus and the Laplace transform. Monash University History of Mathematics Paper 38 (1987).

  127. 127.

    Varma, R. S., Operational representation of the parabolic cylinder functions. Phil. Mag. 7 ser. 22 (1936), 29–34.

    Google Scholar 

  128. 128.

    Varma, R. S., Operational representation of the parabolic cylinder functions — second paper. Phil. Mag. 7 ser. 23 (1937), 926–928.

    Google Scholar 

  129. 129.

    Vignaux, J. C., Sugli integrali di Laplace asintotici. Atti Accad. naz. Lincei, Rend. Cl. Sci. fis. mat. 6 ser. 29 (1939), 396–402.

    Google Scholar 

  130. 130.

    Wagner, K. W., Über eine Formel von Heaviside zur Berechnung von Einschaltvorgängen. (Mit Anwendungsbeispielen.) Arch. Electrotech. 4 (1916), 159–193.

    Google Scholar 

  131. 131.

    Wagner, K. W., Operatorenrechnung nebst Anwendungen in Physik und Technik (Leipzig: Barth, 1940; various later editions under various titles).

    Google Scholar 

  132. 132.

    Wagner, K. W., Laplace Transformation und Operatorenrechnung. Arch. Electrotech. 35 (1941), 502–506.

    Google Scholar 

  133. 133.

    Widder, D. V., A generalization of Dirichlet's series and of Laplace's integrals by means of a Stieltjes integral. Trans. Amer. Math. Soc. 31 (1929), 694–743.

    Google Scholar 

  134. 134.

    Widder, D. V., The Laplace Transform (Princeton University Press, 1946).

Download references

Author information

Affiliations

Authors

Additional information

Communicated by C. Truesdell

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deakin, M.A.B. The ascendancy of the Laplace transform and how it came about. Arch. Hist. Exact Sci. 44, 265–286 (1992). https://doi.org/10.1007/BF00377050

Download citation

Keywords

  • Operational Calculus
  • Undergraduate Curriculum