Contributions to Mineralogy and Petrology

, Volume 94, Issue 4, pp 523–532 | Cite as

Intracrystalline relationships in olivine, orthopyroxene, clinopyroxene and spinel from a suite of spinel lherzolite xenoliths from Mt. Noorat, Victoria, Australia

  • A. Cundari
  • A. Dal Negro
  • E. M. Piccirillo
  • A. Della Giusta
  • L. Secco


A detailed crystal chemical study of coexisting olivine, orthopyroxene, clinopyroxene and spinel from selected Victorian (Australia) lherzolite suites was carried out by means of single crystal x-ray diffraction and electron probe microanalysis to obtain actual site occupancies. The aim of this study was primarily to characterise the intracrystalline configurations and related cation ordering on sites in major mantle constituents. The results demonstrate that cation ordering on sites is subject to distinctive crystallographic controls which depend on the petrological evolution of the suite. Mg-Fe2+ ordering in M1–M2 pyroxene sites depends on variations of the smaller cations, mainly Alvi, Ti4+, Fe3+, and related configurations of M 1. Pressuresensitive Alvi is crucial to Fe2+, the more ordered clinopyroxene showing high Alvi configurations which tend to exclude the larger bivalent cations and yield small polyhedral volumes for M 1, M 2, T sites and the unit cell. Conversely, the coexisting orthopyroxene, characterised by lower Alvi configuration and higher M 1 and unit cell volumes, is relatively more disordered. Olivine is consistent with the coexisting clinopyroxene, the more disordered crystals coexisting with more disordered clinopyroxene, while Al-Mg order in the coexisting spinel shows the reverse relationship. Estimated temperatures of apparent equilibration based on current geothermometers are not considered realistic. Assumptions of ideal cation mixing on sites in pyroxene and spinel are not supported.


Olivine Unit Cell Volume Related Configuration Bivalent Cation Small Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basso R, Comin-Chiaramonti P, Della Giusta A, Flora O (1984) Crystal chemistry of four Mg-Fe-Al-Cr spinels from the Balmuccia peridotite (Western Italian Alps). Neues Jahrb Mineral Abh 150:1–10Google Scholar
  2. Burnham CW, Clark JR, Papike JJ, Prewitt CT (1967) A proposed crystallographic nomenclature for clinopyroxene structures. Z Kristallogr 125:109–119Google Scholar
  3. Clark JR, Papike JJ (1968) Crystal chemical characterisation of omphacites. Am Mineral 53:840–868Google Scholar
  4. Colby JW (1972) MAGIC IV, a computer program for quantitative Electron Microprobe Analysis. Bell Telephone Laboratories, Inc, Allentown, PennsylvaniaGoogle Scholar
  5. Dal Negro A, Carbonin S, Molin GM, Cundari A, Piccirillo EM (1982) Intracrystalline cation distribution in natural clinopyroxenes of tholeiitic, transitional, and alkaline basaltic rocks. In: Saxena SK (ed) Advances in Physical Geochemistry Vol 2. Springer, Berlin Heidelberg New York, p 117–150Google Scholar
  6. Dal Negro A, Carbonin S, Domeneghetti E, Molin GM, Cundari A, Piccirillo EM (1984) Crystal chemistry and evolution of the clinopyroxene in a suite of high pressure ultramafic nodules from the Newer Volcanics of Victoria, Australia. Contrib Mineral Petrol 86:221–229Google Scholar
  7. Dal Negro A, Carbonin S, Salviulo G, Piccirillo EM, Cundari A (1985) Crystal chemistry and site configuration of the clinopyroxene from leucite-bearing rocks and related genetic significance. The Sabatini lavas, Roman Region, Italy. J Petrol 26:1027–1040Google Scholar
  8. Dal Negro A, Cundari A, Piccirillo EM, Molin GM, Uliana D (1986) Distinctive crystal chemistry and site configuration of the clinopyroxene from alkali basaltic rocks. The Nyambeni clinopyroxene suite, Kenya, Contrib Mineral Petrol 92:35–43Google Scholar
  9. Della Giusta A, Princivalle F, Carbonin S (1986) Crystal chemistry of a suite of natural Cr-bearing spinels with 0.15<Cr<1.07. Neues Jahrb Mineral Abh (in press)Google Scholar
  10. Domeneghetti MC, Molin GM, Tazzoli V (1985) Crystal chemical implications of the Mg2+-Fe2+ distribution in orthopyroxenes. Am Mineral 70:987–995Google Scholar
  11. Ellis DJ (1976) High pressure cognate inclusions in the Newer Volcanics of Victoria. Contrib Mineral Petrol 58:149–180Google Scholar
  12. Finger LW (1972) The uncertainty in the calculated ferric iron content of a microprobe analysis. Carnegie Inst Washington Yearb 71:600–603Google Scholar
  13. Frey FA, Green DH (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta 38:1023–1059Google Scholar
  14. Griffin WL, Wass SY, Hollis JD (1984) Ultramafic xenoliths from Bullenmerri and Gnotuk Maars, Victoria, Australia: Petrology of a Subcontinental Crust-Mantle Transition. J Petrol 25:53–87Google Scholar
  15. International Tables for X-ray Crystallography (1974) Kynoch Press, GB, Vol IV:99–101Google Scholar
  16. Irving AJ (1974) Pyroxene-rich ultramafic xenoliths in the Newer Basalts of Victoria, Australia. Neues Jahrb Mineral Abh 120:147–167Google Scholar
  17. James F, Ross M (1975) A system for function minimisation and analysis of the parameter errors and correlation. Computer Phys Commun 10:343–367Google Scholar
  18. Jaques AL, Green DH (1980) Anhydrous melting of peridotite at 0–15 Kb pressure and the genesis of tholeiitic basalts. Contrib Mineral Petrol 73:287–310Google Scholar
  19. Lindsley DH, Dixon SA (1976) Diopside-Enstatite equilibria at 850° to 1,400° C, 5 to 35 kb. Am J Sci 276:1285–1301Google Scholar
  20. North ACT, Phillips DC, Mathews FS (1968) A semi-empirical method of absorption correction. Acta Crystallogr A24:351–359Google Scholar
  21. O'Neill HStC, Navrotsky A (1983) Simple spinels: crystallographic parameters, cation radii, lattice energies and cation distribution. Am Mineral 68:181–194Google Scholar
  22. Osborne MD, Fleet ME, Bancroft IM (1981) Fe2+-Fe3+ ordering in chromite and Cr-bearing spinels. Contrib Mineral Petrol 77:251–255Google Scholar
  23. Papike JJ, Cameron K, Baldwin K (1974) Amphiboles and pyroxenes: characterisation of other than quadrilateral components and estimates of ferric iron from microprobe data. Geol Soc Am 6:1053–1054Google Scholar
  24. Princivalle F, Secco L (1985) Crystal structure refinement of 13 olivines in the Forsterite-Fayalite series from volcanic rocks and ultramafic nodules. TMPM 34:105–115Google Scholar
  25. Rivalenti G, Garuti G, Rossi A, Siena F, Sinigoi F (1981) Existence of different peridotite types and of a layered igneous complex in the Ivrea Zone of the Western Alps. J Petrol 22:127–153Google Scholar
  26. Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570Google Scholar
  27. Sachtleben T, Seck HA (1981) Chemical control of Al-solubility in orthopyroxene and its implications for pyroxene geothermometry. Contrib Mineral Petrol 78:157–165Google Scholar
  28. Saxena SK, Dal Negro A (1983) Petrogenetic application of MgFe2+ order-disorder in orthopyroxene to the cooling history of rocks. Bull Mineral 106:443–449Google Scholar
  29. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767Google Scholar
  30. Spera FJ (1980) Aspects of magma transport. In Physics of magmatic processes (Hargraves RB (ed). Princeton University Press. New Jersey 265–323Google Scholar
  31. Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–33Google Scholar
  32. Takahashi E, Kushiro I (1983) Melting of a dry peridotite at high pressures and basalt magma genesis. Am Mineral 68:859–879Google Scholar
  33. Tokonami M (1965) Atomic scattering factor for O2−. Acta Crystallogr 19:486Google Scholar
  34. Wass SY, Irving AJ (1976) XENMEG: A catalogue of occurrences of xenoliths and megacrysts in volcanic rocks of eastern Australia. Sydney: Australian MuseumGoogle Scholar
  35. Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • A. Cundari
    • 1
  • A. Dal Negro
    • 2
  • E. M. Piccirillo
    • 3
  • A. Della Giusta
    • 2
  • L. Secco
    • 2
  1. 1.Department of GeologyUniversity of MelbourneParkvilleAustralia
  2. 2.Istituto di Mineralogia e PetrologiaUniversità di PadovaItaly
  3. 3.Istituto di Mineralogia e PetrografiaUniversità di TriesteItaly

Personalised recommendations