Skip to main content
Log in

A constitutive model for compressible elastomeric solids

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A non-linear thermo-elastic constitutive model for the large deformations of isotropic materials is formulated. This model is specialized to account for the physics and thermodynamics of the elastic deformation of rubber-like materials, and based on these molecular considerations a constitutive model for compressible elastomeric solids is proposed. The new constitutive model generalizes the incompressible and isothermal model of Arruda and Boyce (1993) to include the compressibility and thermal expansion of these materials. The model is fit to existing experimental data on vulcanized natural rubbers to determine the material parameters for the rubbers examined. The fit between the simple model and the data is found to be very good for large stretches and moderate volume changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

x\s=f(p):

Deformation function

p:

Material point of a body in a reference configuration

x:

Place occupied by material point p in the current configuration

F(p)\eq(\t6/\t6p) f(p):

Deformation gradient

J\s=det F\s>0:

Determinant of F

F\s=RU\s=VR:

Polar decompositions of F

U, V:

Right and left stretch tensors; positive definite and symmetric

R:

Rotation tensor; proper orthogonal

U=Σ 31−1 λ 21 r1⊗r1 :

Spectral representation of U

V=Σ 31=1 λ 2t 1t⊗11 :

Spectral representation of V

λt > 0:

Principal stretches

{ri}:

Right principal basis

{li}:

Left principal basis

C\s=FTF, B\s=FFT :

Right and left Cauchy-Green strain tensors

\gq\s>0:

Absolute temperature

\ge:

Internal energy density/unit reference volume

\gh:

Entropy density/unit reference volume

\gy\s=\ge\t-\gq\gh:

Helmholtz free energy/unit reference volume

References

  • Adams, L. H.; Gibson, R. E. 1930: The Compressibility of Rubber. Journal of the Washington Academy of Sciences 20: 213–223

    Google Scholar 

  • Arruda, E.; Boyce, M. C. 1993: A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials. J. Mech. Phys. Solids 41: 389–412

    Google Scholar 

  • Ericksen, J. L. 1991: Introduction to the Thermodynamics of Solids. London: Chapman & Hall

    Google Scholar 

  • Flory, P. J. 1961: Thermodynamic Relations for High Elastic Materials. Trans. Faraday Soc. 57: 829–838

    Google Scholar 

  • Fong, J. T.; Penn, R. W. 1975: Construction of a Strain-Energy Function for Isotropic Elastic Material. Transactions of the Society of Rheology 19: 99–113

    Google Scholar 

  • Gurtin, M. 1981: An Introduction to Continuum Mechanics. pp. 175–177. New York: Academic Press

    Google Scholar 

  • James, H. M.; Guth, E. 1943: Theory of the Elastic Properties of Rubber. Journal of Chemical Physics 11: 455–481

    Google Scholar 

  • Jones, D. F.; Treloar, L. R. G. 1975: The Properties of Rubber in Pure Homogeneous Strain. J. Phys. D: Appl. Phys. 8: 1285–1304

    Google Scholar 

  • Kuhn, W.; Grün, F. 1942: Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung höchelastischer Stoffe. Kolloidzeitschrift 101: 248–271

    Google Scholar 

  • Meyer, K. H.; Ferri, C. 1935: Sur l'élasticité du caoutchouc. Helv. Chim. Acta. 18: 570–589

    Google Scholar 

  • Ogden, R. W. 1982: Elastic Deformations of Rubber-like Solids. In: Hopkins H. G.; Sewell, M. J. (eds.) Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, pp. 499–537 Oxford: Pergamon Press

    Google Scholar 

  • Ogden, R. W. 1984: Non-Linear Elastic Deformations. New York: John Wiley & Sons

    Google Scholar 

  • Peng, S. T. J.; Landel, R. F. 1975: Stored Energy Function and Compressibility of Compressible Rubber-like Materials under Large Strain. Journal of Applied Physics 46: 2599–2604

    Google Scholar 

  • Penn, R. W. 1970: Volume Changes Accompanying the Extension of Rubber. Transactions of the Society of Rheology 14: 509–517

    Google Scholar 

  • Treloar, L. R. G. 1944: Stress-strain Data for Vulcanized Rubber under Various Types of Deformation. Trans. Faraday Soc. 40: 59–70

    Google Scholar 

  • Treloar, L. R. G. 1975: The Physics of Rubber Elasticity Oxford: Clarendon Press

    Google Scholar 

  • Truesdell, C.; Noll, W. 1965: The Non-Linear Field Theories of Mechanics, Handbuch Der Physik, Vol III/3: 294–304

    Google Scholar 

  • Weiner, J. H. 1983: Statistical Mechanics of Elasticity. Chap. 5. New York: John Wiley & Sons

    Google Scholar 

  • Wood, L. A.; Martin, G. M. 1964: Compressibility of Natural Rubber at Pressures below 500 kg/cm2. Journal of Research of the National Bureau of Standards—A. Physics and Chemistry 68 A: 259–268

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, 27 March 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, L. A constitutive model for compressible elastomeric solids. Computational Mechanics 18, 339–355 (1996). https://doi.org/10.1007/BF00376130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376130

Keywords

Navigation