Skip to main content
Log in

Developmental changes in the ability to express embryonic pepsinogen in the stomach epithelia of chick embryos

  • Published:
Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

The avian stomach is subdivided into two parts, the proventriculus and the gizzard. It has been shown that the gizzard epithelium can express embryonic chick pepsinogen (ECPg) antigen, a marker protein of the proventricular epithelium, as well as normal proventricular epithelium, under the appropriate experimental conditions. To study the possible mechanisms involved in the suppression of ECPg synthesis in the gizzard epithelium during normal development, we carried out heterotypic and heterochronic recombination experiments of the epithelium and mesenchyme of these two organ rudiments. When recombined and cultured with 6-day proventricular mesenchyme, gizzard epithelium of 3.5- to 12-day embryos expressed pepsinogen at all stages tested. However, the ratio of ECPg-positive cells to total epithelial cells in the gizzard epithelium decreased rapidly when epithelium older than 7 days was cultured with proventricular mesenchyme. In contrast to proventricular mesenchyme, 6-day gizzard mesenchyme did not allow ECPg expression in associated proventricular epithelium of 3.5- to 7-day embryos. These results indicate that gizzard epithelium does not express pepsinogen in normal development because of both a decrease in ability to express the enzyme in itself in the course of development and a repressive influence of gizzard mesenchyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anson ML (1939) The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 22:79–89

    Google Scholar 

  • Caplan AI, Ordahl CP (1978) Irreversible gene repression model for control of development. Science 201:120–130

    Google Scholar 

  • Dawid D (1972) Les relations épithélio-mésenchymateuses au cours de l'organogenèse gastrique du foetus de Lapin. J Embryol Exp Morphol 27:177–197

    Google Scholar 

  • Finch RA, Zwilling E (1971) Culture stability of morphogenetic properties of chick limb-bud mesoderm. J Exp Zool 176:397–408

    Google Scholar 

  • Furihata C, Kawachi T, Sugimura T (1972) Premature induction of pepsinogen in developing rat gastric mucosa by hormones. Biochem Biophys Res Commun 47:705–711

    Google Scholar 

  • Gumpel-Pinot M, Yasugi S, Mizuno T (1978) Différenciation d'épithéliums endodermiques associés au mésoderme splanchnique. CR Acad Sci (Paris) 286:117–120

    Google Scholar 

  • Gurdon JB (1987) Embryonic induction — molecular prospects. Development 99:285–306

    Google Scholar 

  • Haffen K, Kedinger M, Simon-Assmann PM, Lacroix B (1982) Mesenchyme-dependent differentiation of intestinal brush-border enzymes in the gizzard endoderm of the chick embryo. In: Burger MM, Weber R (eds) Embryonic development, part B. Cellular aspects. AR Liss, New York, pp 261–270

    Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Google Scholar 

  • Ishizuya-Oka A, Mizuno T (1984) Intestinal cytodifferentiation in vitro of chick stomach endoderm induced by the duodenal mesenchyme. J Embryol Exp Morphol 82:163–176

    Google Scholar 

  • Ishizuya-Oka A, Mizuno T (1985) Chronological analysis of the intestinalization of chick stomach endoderm induced in vitro by duodenal mesenchyme. Wilhelm Roux's Arch 194:301–305

    Google Scholar 

  • Le Douarin N (1969) Particularités du noyau interphasique chez la Caille japonaise (Coturnix coturnix japonica.) Utilisation de ces particularités comme “marquage biologique” dans des recherches sur les interactions tissulaires et les migrations cellulaires au cours de l'ontogenèse. Bull Biol Fr Belg 103:435–452

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Masui T (1981) Differentiation of the yolk-sac endoderm under the influence of the digestive-tract mesenchyme. J Embryol Exp Morphol 62:277–289

    Google Scholar 

  • Mizuno T, Yasugi S (1973) Différenciation in vitro de l'épithélium de l'allantoïde associé à différents mésenchymes du tractus digestif, chez l'embryon de Poulet. CR Acad Sci (Paris) 276:1609–1611

    Google Scholar 

  • Mizuno T, Yasugi S, Takiguchi K (1986) Formation de glandes et expression de pepsinogène dans l'endoderme du gésier sous l'influence du mésenchyme proventriculaire chez l'embryon de Poulet. CR Séances Soc Biol 180:113–116

    Google Scholar 

  • Samloff IM, Townes PL (1970) Electrophoretic heterogeneity and relationships of pepsinogens in human urine, serum, and gastric mucosa. Gastroenterology 58:462–469

    Google Scholar 

  • Sawyer RH, Fallon JF (1983) Epithelial-mesenchymal interactions in development. Praeger, New York

    Google Scholar 

  • Sigot M (1971) Organogenèse de l'estomac de l'embryon de Poulet. Analyse des mécanismes de la différenciation. Arch Anat Microsc Morphol Exp 60:169–204

    Google Scholar 

  • Sigot M, Marin L (1970) Organogenèse de l'estomac de l'embryon de Poulet. Evolution de l'épithélium du proventricule au contact de surfaces conditionnées par des mésenchymes. J Embryol Exp Morphol 24:43–63

    Google Scholar 

  • Takiguchi K, Yasugi S, Mizuno T (1986) Gizzard epithelium of chick embryos can express embryonic pepsinogen antigen, a marker protein of proventriculus. Wilhelm Roux's Arch 195:475–483

    Google Scholar 

  • Wessells NK (1977) Tissue interactions and development. Benjamin, California

    Google Scholar 

  • Wolff Et, Haffen K (1952) Sur une méthode de culture d'organes embryonnaires “in vitro”. Tex Rep Biol Med 10:463–472

    Google Scholar 

  • Yasugi S (1979) Chronological changes in the inductive ability of the mesenchyme of the digestive organs in avian embryos. Dev Growth Differ 21:343–348

    Google Scholar 

  • Yasugi S (1984) Differentiation of allantoic endoderm implanted into the presumptive digestive area in avian embryos. A study with organ-specific antigens. J Embryol Exp Morphol 80:137–153

    Google Scholar 

  • Yasugi S, Mizuno T (1978) Differentiation of the digestive tract epithelium under the influence of the heterologous mesenchyme of the digestive tract in the bird embryos. Dev Growth Differ 20:261–267

    Google Scholar 

  • Yasugi S, Mizuno T (1981) Purification and characterization of embryonic chicken pepsinogen, a unique pepsinogen with large molecular weight. J Biochem 89:311:315

    Google Scholar 

  • Yasugi S, Mizuno T (1982) L'expression de protéases acides et sa régulation dans le proventricule embryonnaire d'Oiseaux. CR Séances Soc Biol 176:880–884

    Google Scholar 

  • Yasugi S, Mizuno T (1984) Différenciation hétérotypique de l'hypoblaste d'Oiseau sous l'influence du mesenchyme proventriculaire. CR Séances Soc Biol 178:580–583

    Google Scholar 

  • Yasugi S, Matsushita S, Mizuno T (1985) Gland formation induced in the allantoic and small-intestinal endoderm by the proventricular mesenchyme is not coupled with pepsinogen expression. Differentiation 30:47–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takiguchi, K., Yasugi, S. & Mizuno, T. Developmental changes in the ability to express embryonic pepsinogen in the stomach epithelia of chick embryos. Roux's Arch Dev Biol 197, 56–62 (1988). https://doi.org/10.1007/BF00376042

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376042

Key words

Navigation