Advertisement

Archive for History of Exact Sciences

, Volume 46, Issue 4, pp 285–320 | Cite as

J. Zaragosa's centrum minimum, an early version of barycentric geometry

  • E. Recasens
Article
  • 50 Downloads

Summary

Using the properties of the Centre of Gravity to obtain geometrical results goes back to Archimedes, but the idea of associating weights to points in calculating ratios was introduced by Giovanni Ceva in De lineis rectis se invicem secantibus: statica constructio (Milan, 1678). Four years prior to the publication of Ceva's work, however, another publication, entitled Geometria Magna in Minimis (Toledo, 1674), 2 appeared stating a method similar to Ceva's, but using isomorphic procedures of a geometric nature. The author was a Spanish Jesuit by the name of Joseph Zaragoza.

Endeavouring to demonstrate an Apollonius' geometrical locus, Zaragoza conceived his idea of centrum minimum — a point strictly defined in traditional geometrical terms — the properties of which are characteristic of the Centre of Gravity. From this new concept, Zaragoza developed a theory that can be considered an early draft of the barycentric theory that F. Mobius was to establish 150 years later in Der barycentrische Calcul (Leipzig, 1827).

Now then, whereas Ceva's work was rediscovered and due credit was given him, to this day Zaragoza's work has remained virtually unnoticed.

Keywords

Geometrical Term Geometrical Locus Geometric Nature Geometrical Result Barycentric Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Primary sources

  1. Bernoulli, Jean. 1742. Opera Omnia. Lausannae and GeneveGoogle Scholar
  2. Carnot, Lazare. 1803. Géométrie de Position. ParisGoogle Scholar
  3. Ceva, Ioanne. 1678. De lineis rectis se invicem secantibus: statica constructio. Milan.Google Scholar
  4. Commandino, Federico. 1588. Pappi Alexandrini Mathematicae Collectiones. Pisauri.Google Scholar
  5. Cremona, Luigi. 1859. “Intorno ad un'operetta di Giovanni Ceva matematico milanese del secolo XVII”, Rivista ginnasiale e dette Scuole tecniche e reali, Vol. 6. Milan and Opere Matematiche. Milano, Hoepli. 1914. Vol. 1, p. 208.Google Scholar
  6. Fermat, Pierre de. 1679. Varia Opera Mathematica. Toulouse.Google Scholar
  7. Fermat, Pierre de 1891–1912. Oeuvres. P. Tannery & C. Henry, eds. Paris.Google Scholar
  8. Huygens, Christiaan. 1888–1950. Oeuvres Complètes. Vols. 1, 2 and 18. The Hague.Google Scholar
  9. Jones, Alexandre. 1986. Pappus of Alexandria, Book 7 of the Collection 2 vols. Springer-Verlag.Google Scholar
  10. Santucho, Antíogo. 1678. Engaños de la otra vida. Manifiestales Dos Antiogo Santucho, Capitan de Cavallos i Sargento Mayor de las plaças de Oran. Para desengaño de los hombres de juyzio que no professan las mathematicas. Biblioteca Nacional de Madrid.Google Scholar
  11. Schooten, Frans Van. 1656–1657. “Apollonii Pergaei Loca Plana Restituta” in Exercitationum Mathematicarum, Book 3. Leiden.Google Scholar
  12. Simson, Robert. 1749. Apollonii Pergaei Locorum Planorum libri II. Glasgow.Google Scholar
  13. Zaragoza, Joseph. 1674. Geometria Magna in Minimis. Toledo.Google Scholar

Secondary sources

  1. Chasles, Michel. 1937. Aperçu historique sur l'origine et le développement des méthodes en géométrie. Bruxelles.Google Scholar
  2. Cotarelo, Armando. 1935. “El P. Jose de Zaragoza y la Astronomia de su tiempo”, Estudios sobre la ciencia española del siglo XVII. Asociación Nacional de Historiadores de la Ciencia Española. Madrid. pp 65–223.Google Scholar
  3. Dijksterhuis, E. J., 1987. Archimedes. Princeton, New Jersey.Google Scholar
  4. Dou, Albert. 1988a “Las Matemáticas en la España de los Austrias”, Actas del segundo simposio sobre Rey Pastor. Editor Luis Español. Logroño.Google Scholar
  5. Dou, Albert. 1988b. “Diccionario Histórico Societatis Iesus (forthcoming).Google Scholar
  6. Euler, Leonhard. 1747/48. “Variae Demonstrationes Geometriae” (E 153). Opera Omnia 1.26. pp 15–32.Google Scholar
  7. Heath, Thomas L. 1956. The Thirteen Books of Euclid's Elements. Dover.Google Scholar
  8. Heath, Thomas L. 1981. A History of Greek Mathematics. Dover.Google Scholar
  9. Lopez Pinero, J.M. et al. 1983 Diccionario histórico de la ciencia moderna en España. 2 vols. Barcelona.Google Scholar
  10. Mahoney, M. S., 1973. The Mathematical Career of Pierre de Fermat. Princeton University Press.Google Scholar
  11. Navarro Brotons, Victor. 1985. Tradició i canvi cientific al pais Valencià Modern. Eliseu Climent Editor. Valencia.Google Scholar
  12. Pe¯nalver y Bachiller, Patricio. 1930/31. “Bosquejo de la matemática española en los siglos de la decadencia”. Opening address for the academic year 1930/31. University of Seville. Biblioteca Universitaria.Google Scholar
  13. Pe¯nalver y Bachiller, Patricio. 1938. “La ‘Geometria Magna in Minimis’ del P. Zaragoza”. Paper read at the XV Congress of the Asociación Española para el Progreso de las Ciencias. Real Academia de Cinencias Exactas. Madrid.Google Scholar
  14. Recasens, Eduard. 1991. La Geometria Magna in Minimis de J. Zaragoza. El Centre Minim i el lloc 5é d'Apol.loni Ph.D. Thesis. Universitat Autónoma de Barcelona.Google Scholar
  15. Sommervogel, Carlos. 1890–1909. Bibliothèque de la Compagnie de Jesus. Paris.Google Scholar
  16. Ver Eecke, Paul. 1933. Pappus d'Alexandrie. La Collection Mathématique. 2 vols. Paris/Bruges.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • E. Recasens
    • 1
  1. 1.Seminari d'Història de les CiènciesUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations