Skip to main content
Log in

The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Thirty-five illite and muscovite concentrates were extracted from Triassic and Permian claystones, shales, slates and phyllites along a cross-section from the diagenetic Alpine foreland (Tabular Jura and borehole samples beneath the Molasse Basin) to the anchi- and epimetamorphic Helvetic Zone of the Central Alps. Concentrates and thin sections were investigated by microscopic, X-ray, infrared, Mössbauer, thermal (DTA and TG), wet chemical, electron microprobe, K-Ar, Rb-Sr, 40Ar/39Ar and stable isotope methods.

With increasing metamorphic grade based on illite “crystallinity” data (XRD and IR) the following continuous changes are observed: (i) the 1Md→2M1 polymorph transformation is completed in the higher grade anchizone; (ii) K2O increases from 6–8 wt. % (diagenetic zone) to 8.5–10% (anchizone) to 10–11.5% (epizone), reflecting an increase in the total negative layer charge from 1.2 to 2.0; (iii) a decrease of the chemical variation of the mica population with detrital muscovite surviving up to the anchizone/ epizone boundary; iv) a shift of an endothermic peak in differential thermal curves from 500 to 750° C; (v) K-Ar and Rb-Sr apparent ages of the fraction <2 μm decrease from the diagenetic zone to the epizone, K-Ar ages being generally lower than Rb-Sr ages. The critical temperature for total Ar resetting is estimated to be 260±30° C. K-Ar and Rb-Sr ages become concordant when the anchizone/ epizone boundary is approached. The stable isotope data, on the other hand, show no change with metamorphic grade but are dependent on stratigraphic age.

These results suggest that the prograde evolution from 1 Md illite to 2M1 muscovite involves a continuous lattice restructuration without rupture of the tetrahedral and octahedral bonds and change of the hydroxyl radicals, however this is not a recrystallization process. This restructuration is completed approximately at the anchizone/epizone boundary. The isotopic data indicate significant diffusive loss of 40Ar and 87Sr prior to any observable lattice reorganization. The restructuration progressively introduces a consistent repartition of Ar and K in the mineral lattices and is outlined by the 40Ar/39Ar age spectra.

Concordant K-Ar and Rb-Sr ages of around 35-30 Ma. with concomitant concordant 40Ar/39Ar release spectra are representative for the main phase of Alpine metamorphism (Calanda phase) in the Glarus Alps. A second age group between 25 and 20 Ma. can probably be attributed to movements along the Glarus thrust (Ruchi phase), while values down to 9 Ma., in regions with higher metamorphic conditions, suggest thermal conditions persisting at least until the middle Tortonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander EC, Michelson MG, Lanphere MA (1978) MMhb-1: A new 40Ar/39Ar dating standard. In short Papers of the Fourth International Conference, Geochronology, Cosmochronology, Isotope Geology (RE Zartman, ed), US Geological Survey Open-File Report 78-801:6–8

  • Bannister FA (1942) Brammallite (sodium-illite), a new mineral from Llandebie, South Wales. Mineral Mag 26:304–307

    Google Scholar 

  • Beugnies A, Godfriaux I, Robaszynski F (1969) Contribution à l'étude des phengites. Bull Soc Belge Géol Pal Hydro 77:95–146

    Google Scholar 

  • Black PM (1975) Mineralogy of New Caledonian metamorphic rocks. IV. Sheet silicates from the Ouégoa district. Contrib Mineral Petrol 49:269–284

    Google Scholar 

  • Blokh AM, Sidorenko GA, Dubinchuk VT, Kuznetsova NN (1974) A find of brammalite (sodium hydromica). Dokl Acad Sci USSR, Earth Sci Sect 208:157–160

    Google Scholar 

  • Brown EH (1967) The greenschist facies in part of eastern Otago, New Zealand, Contrib Mineral Petrol 14:259–292

    Google Scholar 

  • Büchi UP, Lemcke K, Wiener G, Zimdars J (1965) Geologische Ergebnisse der Erdölexploration auf das Mesozoikum im Untergrund des schweizerischen Molassebeckens. Bull Verein schweiz Petrol Geol Ing 32:7–38

    Google Scholar 

  • Burghele A, Zimmermann T, Clauer N, Kröner A (1984) Interpretation of 40Ar/39Ar and K/Ar dating of fine clay mineral fractions in Precambrian sediments. 74. Jahrestagung der Geologischen Vereinigung, 22–25. Febr., Terra Cognita 4:130

    Google Scholar 

  • Centre de Sédimentologie et Géochimie de la Surface de Strasbourg (1978) Technique de préparation des minéraux argileux en vue de l'analyse par diffraction des rayons X. Strasbourg University

  • Chatterjee ND, Johannes W (1974) Thermal stability and standard thermodynamic properties of synthetic 2M1-muscovite, KAl2AlSi3O10(OH)2. Contrib Mineral Petro 48:89–114

    Google Scholar 

  • Clauer N (1976) Géochimie isotopique du strontium des milieux sédimentaires. Application à la géochronologie de la couverture du craton ouest-africain. Mém Sci Géol Strasbourg 1–256

  • Clauer N (1982) Strontium isotopies of Tertiary phillipsites from southern Pacific: Timing of the geochemical evolution. J Sed Petrol 52:1003–1009

    Google Scholar 

  • Cloos M (1983) Comparative study of melange matrix and metashales from the Franciscan subduction complex with the basal Great Valley sequence, California. J Geol 91:291–306

    Google Scholar 

  • Dallmeyer RD, Rivers T (1983) Recognition of extraneous argon components through incremental-release 40Ar/39Ar analysis of biotite and hornblende across the Grenvillian metamorphic gradient in Southwestern Labrador. Geochim Cosmochim Acta 47:413–428

    Google Scholar 

  • Dalrymple GB, Lanphere MA (1971) 40Ar/39Ar technique of K-Ar dating: a comparison with the conventional technique. Earth Planet Sci Lett 17:300–308

    Google Scholar 

  • Dalrymple GB, Alexander EC, Lanphere MA, Kraker GP (1981) Irradiation of samples of 40Ar/39Ar dating using the Geological Survey TRIGA Reactor. US Geol Survey Prof Pap 1176:1–55

    Google Scholar 

  • Deer WA, Howie RA, Zussmann J (1962) Rock forming minerals, II. Sheet silicates. Longmans London

    Google Scholar 

  • Dunoyer de Segonzac G (1969) Les minéraux argileux dans la diagenèse — passage au métamorphisme. Mém Serv Carte Géol Als-Lorr 29:1–320

    Google Scholar 

  • Dunoyer de Segonzac G, Heddebaut C (1971) Paléozoique anchimétamorphique à illite, chlorite, pyrophyllite, allevardite et paragonite dans les Pyrénées Basque-s. Bull Serv Carte Géol AlsLorr 24:277–290

    Google Scholar 

  • Esquevin J (1969) Influence de la composition chimique des illites sur leur cristallinité. Bull Centre Rech Pau SNPA 3:147–153

    Google Scholar 

  • Flehmig W (1973) Kristallinität und Infrarotspektroskopie natürlicher dioktaedrischer Illite. N Jahrb Mineral Monatsh 351–361

  • Flehmig W, Langheinrich G (1974) Beziehung zwischen tektonischer Deformation und Illit-Kristallinität. N Jahrb Geol Paläont, Abh 146:325–346

    Google Scholar 

  • Foscolos AE, Kodama H (1974) Diagenesis of clay minerals from Lower Cretaceous shales of north eastern British Columbia. Clays Clay Mineral 22:319–335

    Google Scholar 

  • Foscolos AE, Powell TG, Gunther PR (1976) The use of clay minerals and inorganic and organic geochemical indicators for evaluating the degree of diagenesis and oil generating potential of shales. Geochim Cosmochim Acta 40:953–966

    Google Scholar 

  • Frank E, Stettler A (1979) K-Ar and 39Ar-40Ar systematics of white K-mica from an Alpine metamorphic profile in the Swiss Alps. Schweiz Mineral Petrogr Mitt 59:375–394

    Google Scholar 

  • Frey M (1968) Quartenschiefer, Equisetenschiefer und germanischer Keuper — ein lithostratigraphischer Vergleich. Eclogae Geol Helv 61:141–156

    Google Scholar 

  • Frey M (1969a) Die Metamorphose des Keupers vom Tafeljura bis zum Lukmanier-Gebiet. Beitr Geol Karte Schweiz NF 131:1–112

    Google Scholar 

  • Frey M (1969b) A mixed-layer paragonite/phengite of low-grade metamorphic origin. Contrib Mineral Petrol 24:63–65

    Google Scholar 

  • Frey M (1970) The step from diagenesis to metamorphism in pelitic rocks during alpine orogenesis. Sedimentology 15:261–279

    Google Scholar 

  • Frey M (1978) Progressive low-grade metamorphism of a black shale formation, central Swiss Alps, with special reference to pyrophyllite and margarite bearing assemblages. J Petrol 19:93–135

    Google Scholar 

  • Frey M, Wieland B (1975) Chloritoid in autochthon-parautochthonen Sedimenten des Aarmassivs. Schweiz Mineral Petrogr Mitt 55:407–418

    Google Scholar 

  • Frey M, Bucher K, Frank E, Mullis J (1980a) Alpine metamorphism along the geotraverse Basel-Chiasso — a review. Eclogae Geol Helv 73:527–546

    Google Scholar 

  • Frey M, Teichmüller M, Teichmüller R, Mullis J, Künzi B, Breitschmid A, Gruner U, Schwizer B (1980b) Very low-grade metamorphism in external parts of the Central Alps: Illite crystallinity, coal rank, and fluid inclusion data. Eclogae Geol Helv 73:173–203

    Google Scholar 

  • Frey M, Hunziker JC, Jäger E, Stern WB (1983) Regional distribution of white K-mica polymorphs and their phengite content in the Central Alps. Contrib Mineral Petrol 83:185–197

    Google Scholar 

  • Fröhlicher H, Weiler W (1952) Die Fischfauna der unterstampischen Molasse des Entlebuchs, Kt. Luzern, und ihre paläogeographische Bedeutung. Eclogae Geol Helv 45:1–35

    Google Scholar 

  • Gaudette HE, Eades JL, Grim RE (1966) The nature of illite. Clays and Clay Mineral 13th Conf: 33–48

  • Gavish E, Reynolds RC (1970) Structural changes and isomorphic substitution in illites from limestones of variable degrees of metamorphism. Israel J Chem 8:477–485

    Google Scholar 

  • Grim RE, Rowland RA (1942) Differential thermal analysis of clay minerals and other hydrous materials. Am Mineral 27:746–761 and 801–818

    Google Scholar 

  • Guidotti CV, Sassi FP (1976) Muscovite as a petrogenetic indicator mineral in pelitic schists. N Jahrb Mineral Abh 127:97–142

    Google Scholar 

  • Harrison TM (1983) Some observations on the interpretation of 40Ar/39Ar age spectra. Isotope Geoscience 1:319–338

    Google Scholar 

  • Herb R (1965) Das Tertiär der helvetischen Decken der Ostschweiz. Bull Verein Schweiz Petrol Geol Ing 31:135–151

    Google Scholar 

  • Hogg CS, Meads RE (1970) The Mössbauer spectra of several micas and related minerals. Mineral Mag 37:606–614

    Google Scholar 

  • Hower J, Mowatt C (1966) The mineralogy of illites and mixedlayer illite/montmorillonites. Am Mineral 51:825–854

    Google Scholar 

  • Hunziker JC (1974) Rb-Sr and K-Ar age determination and the alpine tectonic history of the Western Alps. Mem Ist Geol Mineral Univ Padova XXXI

  • Karpova GV (1965) Authigenic hydromicatization in terrigenous sediments. Dokl Acad Sci USSR, Earth Sci Sect 164:172–175

    Google Scholar 

  • Karpova GV (1969) Clay mineral post-sedimentary ranks in terrigenous rocks. Sedimentology 13:5–20

    Google Scholar 

  • Kossovskaya AG, Drits VA (1970) The variability of micaceous minerals in sedimentary rocks. Sedimentology 15:83–101

    Google Scholar 

  • Kotov NV, Mil'kevich RI, Turchenko SI (1969) Paleothermometry of muscovite-bearing metamorphic rocks based on X-ray and chemical analysis of muscovite. Dokl Acad Sci USSR, Earth Sci Sect 184:147–149

    Google Scholar 

  • Kübler B (1967a) La cristallinité de l'illite et les zones tout à fait supérieures du métamorphisme. Etages tectoniques. Colloque de Neuchâtel 105–122

  • Kübler B (1967b) Anchimétamorphisme et schistosité. Bull Centre Rech Pau SNPA 1:259–278

    Google Scholar 

  • Kübler B (1968) Evaluation quantitative du métamorphisme par la cristallinité de l'illite. Bull Centre Rech Pau SNPA 2:385–397

    Google Scholar 

  • Lawrence JR, Taylor HJ (1971) Deuterium and oxygen-18 correlation: Clay minerals and hydroxides in Quaternary soils compared to meteoric waters. Geochim Cosmochim Acta 35:993–1003

    Google Scholar 

  • Leupold W, Tanner H, Speck J (1942) Neue Geröllstudien in der Molasse. Eclogae Geol Helv 35:235–246

    Google Scholar 

  • MacEwan DMC, Ruiz Amil A, Brown G (1961) Interstratified clay minerals. In: G Brown (ed) The X-ray identification and crystal structures of clay minerals. Mineral Soc London, pp 393–445

  • Maxwell DT, Hower J (1967) High-grade diagenesis and low-grade metamorphism of illite in the Precambrian Belt Series. Am Mineral 52:843–857

    Google Scholar 

  • McDowell SD, Elders WA (1980) Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA. Contrib Mineral Petrol 74:293–310

    Google Scholar 

  • McKinney CR, McCrea JM, Epstein S, Allen HA, Urey C (1950) Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev Sci Instrum 21:724–730

    Google Scholar 

  • Milnes A, Pfiffner A (1977) Structural development of the Infrahelvetic complex, eastern Switzerland. Eclogae Geol Helv 70:83–95

    Google Scholar 

  • Moort JC van (1971) A comparative study of the diagenetic alteration of clay minerals in Mesozoic shales from Papua, New Guinea, and in Tertiary shales from Louisiana, USA. Clays Clay Mineral 19:1–20

    Google Scholar 

  • Nash JT (1973) Microprobe analyses of sericite, chlorite and epidote from Jerome, Arizona. J Res US Geol Survey 1:673–678

    Google Scholar 

  • Niggli E, Niggli C (1965) Karten der Verbreitung einiger Mineralien der alpidischen Metamorphose in den Schweizer Alpen (Stilpnomelan, Alkali-Amphibol, Staurolith, Disthen, Sillimanit). Eclogae Geol Helv 58:335–368

    Google Scholar 

  • Purdy JW, Stalder HA (1973) K-Ar ages of fissure minerals from the Swiss Alps. Schweiz Mineral Petrogr Mitt 53:79–98

    Google Scholar 

  • Radoslovich EW, Norrish K (1962) The cell dimensions and symmetry of layer-lattice silicates I. Some structural considerations. Am Mineral 47:599–616

    Google Scholar 

  • Reynolds RC (1963) Potassium-rubidium ratios and polymorphism in illites and microclines from the clay size fractions of Proterozoic carbonate rocks. Geochim Cosmochim Acta 27:1097–1112

    Google Scholar 

  • Reynolds RC (1980) Interstratified clay minerals. In: GW Brindley and G Brown (eds) Crystal structures of clay minerals and their identification. Mineral Soc London, pp 249–303

  • Riedel D (1966) Ein Beitrag zur Mineralogie und Chemie der Tone aus dem Teritär der Niederrheinischen Bucht. Diss Köln

  • Rögl F, Steininger FF (1983) Vom Zerfall der Tethys zu Mediterran und Paratethys. Die neogene Paläogeographie und Palinspastik des zirkum-mediterranen Raumes. Ann Naturhist Mus Wien 85/A: 135–163

    Google Scholar 

  • Rybach L, Büchi UP, Bodmer P, Krüsi HR (1980) Die Tiefengrundwässer des schweizerischen Mittellandes aus geothermischer Sicht. Eclogae Geol Helv 73:293–310

    Google Scholar 

  • Schmid SM (1975) The Glarus overthrust: field evidence and mechanical model. Eclogae Geol Helv 68:247–280

    Google Scholar 

  • Schwander H, Gloor F (1980) Zur quantitativen Mikrosondenanalyse von geologischen Proben mittels kombiniertem EDS/WDS. X-ray Spectrometry 9:134–137

    Google Scholar 

  • Seki Y (1973) Basal spacing of metamorphic white micas and type of metamorphism. J Geol Soc Japan 79:611–620

    Google Scholar 

  • Smykatz-Kloss W, Althaus E (1974) Experimental investigation of the temperature dependence of the “crystallinity” of illites and glauconites. Bull Group Franç Argiles 26:319–325

    Google Scholar 

  • Steiger R, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Google Scholar 

  • Stephens MB, Glasson MJ, Keays RR (1979) Structural and chemical aspects of metamorphic layering development in metasediments from Clunes, Australia. Am J Sci 279:129–160

    Google Scholar 

  • Stubican V, Roy R (1961) Isomorphous substitution and infra-red spectra of the layer lattice silicates. Am Mineral 46:32–51

    Google Scholar 

  • Tanner H (1944) Beitrag zur Geologie der Molasse zwischen Rikken und Hörnli. Diss Univ Zürich

  • Tobschall HJ (1974) Untersuchungen zur „Short Distance“-Variabilität der Zusammensetzung von Hellglimmern niedrigmetamorpher Pelite des Beaume-Tales (Mittlere Cévennen). N Jahrb Mineral Abh 121:1–42

    Google Scholar 

  • Trümpy R (1969) Die helvetischen Decken der Ostschweiz: Versuch einer palinspastischen Korrelation und Ansätze zu einer kinematischen Analyse. Eclogae Geol Helv 62:105–142

    Google Scholar 

  • Turner (1970) Thermal histories of meteorites by the 40Ar-39Ar method. In: P Millman (ed) Meteorite Research. Reidel Publishing Company, Dordrecht-Holland, pp 407–417

    Google Scholar 

  • Velde B (1965) Experimental determination of muscovite polymorph stabilities. Am Mineral 50:436–449

    Google Scholar 

  • Velde B (1978) Infrared spectra of synthetic micas in the series muscovite — MgAl celadonite. Am Mineral 63:343–349

    Google Scholar 

  • Weaver CE (1956) The distribution and identification of mixed-layer clays in sedimentary rocks. Am Mineral 41:202–221

    Google Scholar 

  • Weaver CE (1965) Potassium content of illite. Science 147:603–605

    Google Scholar 

  • Weaver CE, Beck KC (1971) Clay water diagenesis during burial: How mud becomes gneiss. Geol Soc Am Spec Pap 134:1–96

    Google Scholar 

  • Weaver CE, Pollard LD (1973) The chemistry of clay minerals. Developments in Sedimentology 15. Elsevier, Amsterdam

    Google Scholar 

  • Williamson JH (1968) Least-squares fitting of a straight line. Can J Phys 46:1845–1847

    Google Scholar 

  • Wurster P (1964) Geologie des Schilfsandsteins. Mitt Geol Staatsinst Hamburg H33, Text und Atlas

  • Wurster P (1968) Paläogeographie der deutschen Trias und die paläogeographische Orientierung der Lettenkohle in Südwestdeutschland. Eclogae Geol Helv 61:137–166

    Google Scholar 

  • Yoder HS, Eugster HP (1955) Synthetic and natural muscovites. Geochim Cosmochim Acta 8:225–280

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunziker, J.C., Frey, M., Clauer, N. et al. The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contr. Mineral. and Petrol. 92, 157–180 (1986). https://doi.org/10.1007/BF00375291

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375291

Keywords

Navigation