Skip to main content
Log in

Kinetics of discontinuous precipitation in a Zn-2.5 at % Cu alloy

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The morphology and growth kinetics of discontinuous precipitation in a Zn-2.5 at % Cu alloy have been studied in the temperature range 383–583 K by optical and scanning electron microscopy. The precipitate phase has a lamellar morphology, and maintains a statistically constant interlamellar spacing under isothermal growth conditions. The interlamellar spacing increases with an increase in temperature. The isothermal growth kinetics in terms of reaction front migration rate is maximum at 523 K. The upper temperature limit for the occurrence of reaction in this alloy has been predicted to be 643 K. A detailed kinetic analysis of the experimental data using several analytical models has confirmed discontinuous precipitation in this system to be a boundary diffusion controlled reaction, and enabled the determination of the grain boundary chemical diffusivity of Cu in a Zn-rich Zn-Cu alloy in the temperature range studied. The corresponding activation energy values determined in this study, range between 65 to 86 kJ/mol−1, which compare well with the relevant data in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. B. Williams and E. P. Butler, Int. Met. Rev. 26 (1981) 153.

    Article  CAS  Google Scholar 

  2. W. Gust, in “Phase Transformations”, Series 3, No. 11, Vol 1, edited by The Institute of Metallurgists (The Chameleon Press, London, 1979) p. II/27.

    Google Scholar 

  3. M. Friesel, I. Manna and W. Gust, Colloque de Physique 51 (1990) C1–381.

    Google Scholar 

  4. I. Kaur and W. Gust, in “Fundamental of Grain and Interphase Boundary Diffusion”, 2nd Edn (Ziegler Press, Stuttgart, 1989) p. 222.

    Google Scholar 

  5. I. Manna, W. Gust and B. Predel, Scripta Metall. Mater. 24 (1990) 1635.

    Article  CAS  Google Scholar 

  6. I. Manna, J. N. Jha and S. K. Pabi, Acta Metall. Mater. (communicated).

  7. Idem, Scripta Metall. Mater. 29 (1993) 817.

    Article  CAS  Google Scholar 

  8. B. Predel and W. Gust, Mater. Sci. Engng 16 (1974) 239.

    Article  CAS  Google Scholar 

  9. S. P. Gupta, Acta Metall. 35 (1987) 747.

    Article  CAS  Google Scholar 

  10. C. P. Ju and R. A. Fournelle, ibid. 33 (1985) 71.

    Article  CAS  Google Scholar 

  11. C. S. Smith, Trans. Amer. Soc. Met. 45 (1953) 553.

    Google Scholar 

  12. R. Watanabe and S. Koda, Trans. National Res. Inst. Met. 7 (1965) 13.

    Google Scholar 

  13. S. Abdou and W. Gust, in “Developments in Production Engineering Design and Control”, edited by A. E. Al-Ashram and M. W. Badawi (Alexandria University, 1989) p. 137.

  14. J. Petermann and E. Hornbogen, Z. Metallk. 59 (1968) 814.

    CAS  Google Scholar 

  15. K. Lucke, ibid. 52 (1961) 1.

    CAS  Google Scholar 

  16. I. Manna, S. K. Pabi and W. Gust, Acta Metall. Mater. 39 (1991) 1489.

    Article  CAS  Google Scholar 

  17. M. Hillert, in “Mechanism of Phase Transformation in Crystalline Solids” edited by the Institute of Metals, (London, 1969) p. 231.

  18. W. Gust, T. H. Chuang and B. Predel, in “Decomposition of alloys: the early stages”, edited by P. Haasen et al. (Pergamon Press, Oxford, 1984) p. 208.

    Chapter  Google Scholar 

  19. C. Zener, Trans. AIME 167 (1946) 550.

    Google Scholar 

  20. D. Turnbull, Acta Metall. 3 (1955) 55.

    Article  CAS  Google Scholar 

  21. H. I. Aaronson and Y. C. Liu, Scripta Metall. 2 (1968) 1.

    Article  CAS  Google Scholar 

  22. J. W. Cahn, Acta Metall. 7 (1959) 18.

    Article  CAS  Google Scholar 

  23. J. M. Shapiro and J. S. Kirkaldy, ibid. 16 (1968) 1239.

    Article  CAS  Google Scholar 

  24. B. E. Sundquist, Metall. Trans. A4 (1973) 1919.

    Article  Google Scholar 

  25. M. Hillert, Acta Metall. 30 (1982) 1689.

    Article  CAS  Google Scholar 

  26. G. B. Gibbs, Phys. Status Solidi 16 (1966) K27.

    Article  CAS  Google Scholar 

  27. M. Hansen and K. Anderko, in “Constitution of Binary Alloys” (McGraw-Hill, New York, 1958) p. 649.

    Google Scholar 

  28. L. E. Murr, in “Interfacial Phenomena in Metals and Alloys” (Addison-Wesley, London, 1975) p. 133.

    Google Scholar 

  29. B. E. Sundquist, Acta Metall. 16 (1968) 1413.

    Article  CAS  Google Scholar 

  30. D. Bergner and W. Lange, Phys. Status Solidi 18 (1966) 75.

    Article  CAS  Google Scholar 

  31. C. J. Smithells (Ed.), in “Metals Reference Book” (Butterworth, London, 1976) p. 880.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manna, I., Jha, J.N. & Pabi, S.K. Kinetics of discontinuous precipitation in a Zn-2.5 at % Cu alloy. Journal of Materials Science 30, 1449–1454 (1995). https://doi.org/10.1007/BF00375247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375247

Keywords

Navigation