Skip to main content
Log in

A new partial substitution mechanism of CO 2−3 /CO3OH3− and SiO 4−4 for the PO 3−4 group in hydroxyapatite from the Kaiserstuhl alkaline complex (SW-Germany)

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Based on a detailed mineral-chemical investigation of apatite from a series of carbonatites and associated silicate volcanic rocks of the Kaiserstuhl tertiary alkaline volcanic centre, evidence for a new substitution mechanism was found within the hydroxyapatite group, yielding the following simplified formula: (Ca, Sr, LREE)10(SiO4)x(CO3)x(PO4)6−2x(OH, F)2 with 0<x<1.2 LREE represents light rare-earth elements such as Ce, La, and Nd. Other elements were detected included Cl, S and traces of Mg, Al, K, Fe, Mn, and Th, however they have no effect on the substitution mechanism found. F is present in varying amounts, although well under half of the total possible halogen content (3.7 wt.% F), and shows a distinct antipathetic concentration correlation with REE and Si (and in turn with C). Charge balance is generally maintained by the coupled substitution of CO 2−3 and SiO 4−4 for PO 3−4 ; however, excess charge may be subsequently adjusted by CO3OH3− partly accompanied by the REE in the Ca site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelrod S, Rohrlich V (1982) Chemical variability in francolites from Israeli phosphorites macrograins. Mineral Deposita 17:1–15

    Google Scholar 

  • Beevers CA, McIntyre DB (1946) The atomic structure of fluorapatite and its relation to that of tooth and bone material. Mineral Mag 27:254–257

    Google Scholar 

  • Belyakov AYu, Kravchenko SM (1979) The distribution of rare earths in apatite as an indicator of the basicity and origin of comagmatic rock series. Trans from Doklady Akademii Nauk SSSR. 248/5:1216–1220

    Google Scholar 

  • Biggar GM (1967) Apatite compositions and liquidus phase relationships on the join Ca(OH)2-CaF2-Ca3(PO4)2-H2O. Mineral Mag 36:539–564

    Google Scholar 

  • Borneman-Starinkevich ID, Belov NV (1953) Carbonate-apatites. Dokl Adad Nauk SSSR 90:89–92

    Google Scholar 

  • Brophy GP, Nash TJ (1968) Compositional, infrared and X-ray analysis of fossil bone. Am Min 53:445–454

    Google Scholar 

  • Daub R (1912) Beiträge zur Kenntnis der Kontaktmineralien aus dem körnigen Kalke des Kaiserstuhls. Inaug Diss, Freiburg i Br

  • Eysel W, Roy DM (1973) Hydrothermal flux growth of hydroxyapatites by temperature oscillation. J Crystal Growth 20:245–250

    Google Scholar 

  • Gubser R, Sommerauer J (1977) EMMA, Correction Procedure for Quantitative Electron Probe Analyses. ETHZ, unpublished

  • Gulbrandsen RA, Kramer JR, Beatty LB, Mays RE (1966) Carbonate-bearing apatite from Faraday Township, Ontario, Canada. Am Mineral 51:819–824

    Google Scholar 

  • Ito J (1968) Silicate apatites and Oxyapatites. Am Mineral 53:890–907

    Google Scholar 

  • Jahnke RA (1984) The synthesis and solubility of carbonate fluorapatite. Am J Science 284:58–78

    Google Scholar 

  • Katz K, Keller J (1981) Comb-layering in carbonatite dykes. Nature 294:350–352

    Google Scholar 

  • Katz-Lehnert K (1985) Doctoral thesis, University Freiburg i Br (in prep)

  • Katz-Lehnert K, Sommerauer J (1985) The formation of silicate-carbonate-hydroxyapatite and its relation to the carbonatite rock evolution of the Kaiserstuhl (SW-Germany) (in prep)

  • Keller J (1981) Carbonatitic Volcanism in the Kaiserstuhl alkaline complex: evidence for highly fluid carbonatitic melts at the earth's surface. J Volcanol Geotherm Res 9:423–431

    Google Scholar 

  • LeBas MJ, Handley LD (1979) Variation in apatite composition in ijolitic and carbonatitic igneous rocks. Nature 297:54–56

    Google Scholar 

  • LeGeros RZ (1965) Effect of carbonate on the lattice parameters of apatite. Nature 206:403–404

    Google Scholar 

  • Liebau F (1966) Die Kristallchemie der Phosphate. Fortschr Mineral 42:266–302

    Google Scholar 

  • Manheim FT, Gubrandsen RA (1979) Marine phosphorites. From: Marine Minerals, 6, R.G. Burns, Short Course Notes, 151–173. Mineral Soc Am Washington, DC

    Google Scholar 

  • Mayer I, Roth RS, Brown WE (1974) Rare earth substituted fluoride-phosphate apatites. J Solid State Chem 11:33–37

    Google Scholar 

  • McClellan GH, Lehr J (1969) Crystal-chemical investigation of natural apatites. Am Mineral 54:1374–1391

    Google Scholar 

  • McConnell D (1937) The substitution of SiO4- and SO4-groups for PO4-groups in the apatite structure; ellestadite, the end-member. Am Mineral 22:977–986

    Google Scholar 

  • McConnell D (1938) A strucktural investigation of the isomorphism of the apatite group. Am Mineral 23:1–19

    Google Scholar 

  • McConnell D (1952) The problem of the carbonate apatites. IV. Structural substitutions involving CO3 and OH. Bull Soc Fr Mineral Cryst 75:428–445

    Google Scholar 

  • McConnell D (1973) Apatite, its Crystal Chemistry, Mineralogy, Utilization, and Geology and Biologic Occurences. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • McConnell D, Gruner JW (1940) The problem of the carbonate-apatites. III. Carbonate-apatite from Magnet Cove, Arkansas. Am Mineral 25:157–167

    Google Scholar 

  • Nash WP (1972) Apatite-calcite equilibria in carbonatites: chemistry of apatite from Iron Hill, Colorado. Geochim Cosmochim Acta 36:1313–1319

    Google Scholar 

  • Posner AS, Perloff A, Diorio AF (1958) Refinement of the hydroxyapatite structure. Acta Cryst 11:308

    Google Scholar 

  • Prins P (1973) Apatites from African carbonatites. Lithos 6:133–144

    Google Scholar 

  • Puchelt H, Emmermann R (1976) Bearing of rare earth patterns of apatites from igneous and metamorphic rocks. Earth Planet Sci Lett 31:279–286

    Google Scholar 

  • Rouse RC, Dunn PJ (1982) A contribution to the crystal chemistry of ellestadite and the silicate sulfate apatites. Am Min 67:90–96

    Google Scholar 

  • Roy DM, Drafall E, Roy R (1978) Crystal chemistry, crystal growth, and phase equilibria of apatites. From: Phase Diagrams. Material Sciences and Technology, Vol. 6-V, A.M. Alper, Academic Press, New York, pp 185–239

    Google Scholar 

  • Saas RL, Vidale R, Donohue J (1957) Interatomic distances and thermal anisotropy in sodium nitrate and calcite. Acta Cryst 10:567

    Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective Ionic Radii in Oxides and Fluorides. Acta Cryst B25:925–945

    Google Scholar 

  • Sixta V (1977) Coulometric determinations of carbonates in rock samples. Z Anal Chem 285:369–372

    Google Scholar 

  • Sommerauer J (1981) COMIC-ED Manual: Control and Data Acquisition Program for the Microprobe SEMQ (ARL). ETHZ, unpublished

  • Sommerauer J, Katz-Lehnert K (1985) Trapped phosphate melt inclusions in silicate-carbonate-hydroxyapatite from quenched alvikite dykes from the Kaiserstuhl carbonatite complex (W-Germany) Contrib Mineral Petrol 91:281–286

    Google Scholar 

  • Stadler HJ (1981) Beiträge zur Kenntnis der Carbonat-Apatite. Dissertation Universität Karlsruhe (57 pages)

  • Sudarsanan K, Young RA (1978) Structural interactions of F, Cl and OH in apatites. Acta Cryst B34:1401–1407

    Google Scholar 

  • Taborszky FK (1962) Geochemie des Apatits in Tiefengesteinen am Beispiel des Odenwaldes. Beitr Mineral Petrogr 8:354–392

    Google Scholar 

  • Trueman NA (1966) Substitutions for phosphate ions in apatite. Nature 210:937–938

    Google Scholar 

  • Van Wambecke L (1964) Geochemie minerale des carbonatites du Kaiserstuhl. From: Les roches alcalines et les carbonatites du Kaiserstuhl. EURATOM, Rapport 1827. d,f,e, Bruxelles, 232 pages

  • Walther J (1981) Fluide Einschlüße im Apatit des Karbonatits vom Kaiserstuhl. Ein Beitrag zur Interpretation der Karbonatitgenese. Dissertation Universität Karlsruhe (195 pages)

  • Watson EB, Green TH (1981) Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth Planet Sci Lett 56:405–421

    Google Scholar 

  • Wimmenauer W (1957) Beiträge zur Petrographie des Kaiserstuhls, Teil I. N Jahrb Mineral Abh 91:131–150

    Google Scholar 

  • Wimmenauer W (1959) Beiträge zur Petrographie des Kaiserstuhls, Teile I (Schluß), II, III. N Jahrb Mineral Abh 93:137–173

    Google Scholar 

  • Wimmenauer W (1962) Beiträge zur Petrographie des Kaiserstuhls, Teile IV, V. N Jahrb Mineral Abh 98:367–415

    Google Scholar 

  • Wimmenauer W (1963) Beiträge zur Petrographie des Kaiserstuhls, Teile VI, VII. N Jahrb Mineral Abh 99:231–276

    Google Scholar 

  • Wimmenauer W (1967) Igneous rocks in the Rhinegraben. In: The Rhinegraben Progress Report 1967. Rothe JP, Sauer K, Freiburg i.Br./Strasbourg, 144–148

  • Young EJ, Munson EL (1966) Fluor-Chlor-Oxy-Apatite and Sphene from Crystal Lode Pegmatite near Eagle, Colorado. Am Mineral 51:1476–1493

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommerauer, J., Katz-Lehnert, K. A new partial substitution mechanism of CO 2−3 /CO3OH3− and SiO 4−4 for the PO 3−4 group in hydroxyapatite from the Kaiserstuhl alkaline complex (SW-Germany). Contr. Mineral. and Petrol. 91, 360–368 (1985). https://doi.org/10.1007/BF00374692

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00374692

Keywords

Navigation