Skip to main content
Log in

Polybaric differentiation of alkali basaltic magmas: evidence from green-core clinopyroxenes (Eifel, FRG)

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Quaternary foidites and basanites of the West Eifel (Germany) contain optically and chemically heterogeneous clinopyroxenes, some of which occur as discrete zones within individual crystals: Most clinopyroxene phenocrysts are made up of a core and a normally zoned comagmatic titanaugite mantle. Most cores are greenish pleochroic and moderately resorbed (fassaitic augite). Some are pale green and strongly resorbed (acmitic augite). Cores of Al-augite composition and of Cr-diopside derived from peridotite xenoliths are rare. The fassaitic augites are similar in trace element distribution pattern to the titanaugites, but are more enriched in incompatible elements. The acmitic augites, in contrast, are clearly different in their trace element composition and are enriched in Na, Mn, Fe and depleted in Al, Ti, Sr, Zr. A model for polybaric magma evolution in the West Eifel is proposed: Primitive alkali basaltic magma rises through the upper mantle precipitating Al-augite en route. It stagnates and differentiates near the crust/mantle boundary crystallizing Fe-rich fassaitic augites. The magma differentiated at high pressure is subsequently mixed with new pulses of primitive magma from which the rims of pyroxene are crystallized. Sporadic alkali pyroxenite xenoliths are interpreted to represent cumulates of cognate phases formed within the crust and not metasomatized upper mantle material (Lloyd and Bailey 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki K, Kushiro I (1968) Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel. Contrib Mineral Petrol 18:326–337

    Google Scholar 

  • Barton M, Bergen vMJ (1981) Green clinopyroxenes and associated phases in a potassium-rich lava from the Leucite Hills, Wyoming. Contrib Mineral Petrol 77:101–114

    Google Scholar 

  • Barton M, Varekamp JC, Bergen vMJ (1982) Complex zoning of clinopyroxenes in the lavas of Vulsini, Latium, Italy: evidence for magma mixing. J Volcanol Geotherm Res 14:361–388

    Google Scholar 

  • Becker HJ (1977) Pyroxenites and hornblendites from the maartype volcanoes of the Westeifel, Federal Republic of Germany. Contrib Mineral Petrol 65:45–52

    Google Scholar 

  • Binns RA, Duggan MB, Wilkinson JFG (1970) High pressure megacrysts in alkaline lavas from Northeastern New South Wales. Am J Sci 269:132–168

    Google Scholar 

  • Borley GD, Suddaby P, Scott P (1971) Some xenoliths from the alkalic rocks of Tenerife, Canary Islands. Contrib Mineral Petrol 31:102–114

    Google Scholar 

  • Brooks CK, Printzlau I (1978) Magma mixing in mafic alkaline volcanic rocks: the evidence from relict phenocryst phases and other inclusions. J Volcanol Geotherm Res 4:315–331

    Google Scholar 

  • Büchel G, Lorenz V (1982) Zum Alter des Maarvulkanismus der Westeifel. N Jahrb Geol Paläont Abh 163:1–22

    Google Scholar 

  • Civetta L, Innocenti F, Lirer L, Manetti P, Munno R, Peccerillo A, Poli G, Serri G (1979) Serie potassica ed alta in potassio dei Monti Ernici (Lazio Meridoniale): Considerazioni petrologiche e geochimiche. Rend Soc It Mineral Petrol 35:227–249

    Google Scholar 

  • Deer WA, Howie RA, Zusman J (1978) Rock-forming minerals. Vol. 2 Chain silicates. Longman, London, pp 1–668

    Google Scholar 

  • Duda A (1984) Die petrologische Bedeutung der “Grünkern”-Pyroxene und anderer Einsprenglingsphasen in den Foiditen und Basaniten der Westeifel. Bochumer Geol Geotechn Arb 16:1–190

    Google Scholar 

  • Duda A, Schmincke HU (1978) Quaternary basanites, melilite nephelinites and tephrites from the Laacher See area (Germany). N Jahrb Mineral Abh 132:1–33

    Google Scholar 

  • Duda A, Shimizu N (1985) An application of kinetic crystal growth models to trace element zoning in alkali basaltic clinopyroxenes. Mater Sci Forum (in press)

  • Frey FA, Green DH (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta 38:1023–1059

    Google Scholar 

  • Frisch T, Schmincke HU (1969) Petrology of clinopyroxene-amphibole inclusions from the Roque Nublo Volcanics, Gran Canaria, Canary Islands (Petrology of Roque Nublo Volcanics I). Bull Volcanol 33:1073–1088

    Google Scholar 

  • Fuchs K, Gehlen vK, Mälzer H, Murawski H, Semmel A (eds) (1983) Plateau uplift — The Rhenish Shield — A case history. Springer, Berlin Heidelberg New York, pp 1–411

    Google Scholar 

  • Green DH, Hibberson W (1970) Experimental duplication of conditions of precipitation of high pressure phenocrysts in a basaltic magma. Phys Earth Planet Interiors 3:247–254

    Google Scholar 

  • Huckenholz HG (1965a) Der petrogenetische Werdegang der Klinopyroxene in den tertiären Vulkaniten der Hocheifel. I. Die Klinopyroxene der Alkaliolivinbasalt-Trachyt-Assoziation. Contrib Mineral Petrol 11:138–195

    Google Scholar 

  • Huckenholz HG (1965b) Der petrogenetische Werdegang der Klinopyroxene in den tertiären Vulkaniten der Hocheifel. II. Die Klinopyroxene der Basanitoide. Contrib Mineral Petrol 11:415–448

    Google Scholar 

  • Huckenholz HG (1966) Der petrogenetische Werdegang der Klinopyroxene in den tertiären Vulkaniten der Hocheifel. III. Die Klinopyroxene der Pikritbasalte (Ankaramite). Contrib Mineral Petrol 12:73–95

    Google Scholar 

  • Huckenholz HG (1973) The origin of fassaitic augite in the alkali basalt suite of the Hocheifel area, Western Germany. Contrib Mineral Petrol 40:315–326

    Google Scholar 

  • Irving AJ (1974) Megacrysts from the Newer Basalts and other basaltic rocks of SE Australia. Geol Soc Am Bull 85:1503–1514

    Google Scholar 

  • Irving AJ (1978) Flow crystallization: A mechanism for fractionation of primary magmas at mantle pressures (abstr). EOS Am Geophys Union Trans 59:1214

    Google Scholar 

  • Irving AJ (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. Am J Sci 280A: 389–426

    Google Scholar 

  • Irving AJ (1984) Polybaric mixing and fractionation of alkalic magmas; evidence from megacryst suites (abstr.) EOS Am Geophys Union Trans 65:1153

    Google Scholar 

  • Irving AJ, Price RC (1981) Geochemistry and evolution of lherzolite-bearing phonolitic lavas from Nigeria, Australia, East Germany and New Zealand. Geochim Cosmochim Acta 45:1309–1320

    Google Scholar 

  • Irving AJ, Frey FA (1984) Trace element abundances in megacrysts and their host basalts: Constraints on partition coefficients and megacryst genesis. Geochim Cosmochim Acta 48:1201–1221

    Google Scholar 

  • Lloyd FE (1981) Upper-mantle metasomatism beneath a continental rift: clinopyroxenes in alkali mafic lavas and nodules from South West Uganda. Mineral Mag 44:315–323

    Google Scholar 

  • Lloyd FE, Bailey DK (1975) Light element metasomatism of the continental mantle: The evidence and the consequences. In: Ahrens LH, Dawson JB, Duncan AR, Erlank AJ (eds) Physics and chemistry of the earth Vol. 9. Pergamon, Oxford, pp 389–416

    Google Scholar 

  • Mechie J, Prodehl C, Fuchs K (1983) The long-range seismic refraction experiment in the Rhenish Massif. In: Fuchs K, Gehlen vK, Mälzer H, Murawski H, Semmel A (eds) Plateau uplift — The Rhenish Shield — A case history. Springer, Berlin Heidelberg New York, pp 260–275

    Google Scholar 

  • Mengel K (1983) Petrographie und Geochemie der Tuffe des Habichtswaldes und seiner Umgebung (Nördliche Hessische Senke). N Jahrb Miner Abh 147:1–20

    Google Scholar 

  • Menzies M, Murthy R (1980) Mantle metasomatism as a precursor to the genesis of alkaline magmas — isotopic evidence. Am J Sci 280A: 622–638

    Google Scholar 

  • Mertes H (1983) Aufbau und Genese des Westeifeler Vulkanfeldes. Bochumer Geol Geotechn Arb 9:1–415

    Google Scholar 

  • Mertes H, Schmincke HU (1983) Age distribution of volcanoes in the West-Eifel. N Jahrb Geol Paläont Abh 166:260–293

    Google Scholar 

  • Mertes H, Schmincke HU (1985) origin and differentiation of mafic potassic lavas of the Quaternary West Eifel volcanic field (FRG). I. Major and trace elements. Contrib Mineral Petrol 89:330–345

    Google Scholar 

  • Nicholls J (1977) The activities of components in natural silicate melts. In: Fraser DG (ed) Thermodynamics in geology. D Reidel, Holland, pp 327–348

    Google Scholar 

  • Nicholls J, Carmichael ISE (1972) The equilibration temperature and pressure of various lava types with spinel and garnet peridotite. Am Mineral 57:941–959

    Google Scholar 

  • Nielsen RL, Drake MJ (1979) Pyroxene-melt equilibria. Geochim Cosmochim Acta 43:1259–1272

    Google Scholar 

  • Raikes SA (1980) Teleseismic evidence for velocity heterogeneity beneath the Rhenish Massif. J Geophys 48:80–83

    Google Scholar 

  • Ray GL, Hart SR (1982) Quantitative analysis of silicates by ion microprobe. Int J Mass Spec Ion Phys 44:231–255

    Google Scholar 

  • Ray GL, Shimizu N, Hart SR (1983) An ion-microprobe study of the partitioning of trace elements between clinopyroxene and liquid in the system diopside — albite — anorthite. Geochim Cosmochim Acta 47:2131–2140

    Google Scholar 

  • Reed SJB, Ware NG (1973) Quantitative electron microprobe analysis using a lithium drifted silicon detector. X-ray Spectrom 2:69–74

    Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Google Scholar 

  • Sachtleben T (1980) Petrologie ultrabasischer Auswürflinge aus der Westeifel. Dissertation Univ Köln, 1–160

  • Seck HA, Wedepohl KH (1983) Mantle xenoliths in the Rhenish Massif and the Northern Hessian depression. In: Fuchs K, Gehlen vK, Mälzer H, Murawski H, Semmel A (eds) Plateau uplift — The Rhenish Shield — A case history. Springer, Berlin Heidelberg New York, pp 343–351

    Google Scholar 

  • Shimizu N (1981) Trace element incorporation into growing augite phenocryst. Nature 289:575–577

    Google Scholar 

  • Stosch HG (1980) Zur Geochemie der ultrabasischen Auswürflinge des Dreiser Weihers in der Westeifel: Hinweise auf die Evolution des kontinentalen oberen Erdmantels. Dissertation Univ Köln, 1–233

  • Stosch HG, Seck HA (1980) Geochemistry and mineralogy of the two spinel peridotite suites from Dreiser Weiher, West Germany. Geochim Cosmochim Acta 44:457–470

    Google Scholar 

  • Stuckless JS, Irving AJ (1976) Strontium isotope geochemistry of megacrysts and host basalts from SE Australia. Geochim Cosmochim Acta 40:209–213

    Google Scholar 

  • Thompson RN (1977) Primary basalts and magma genesis. III Alban Hills, Roman comagmatic province, Central Italy. Contrib Mineral Petrol 60:91–108

    Google Scholar 

  • Viereck L (1984) Geologische und petrologische Entwicklung des pleistozänen Vulkankomplexes Rieden, Ost-Eifel. Bochumer Geol Geotechn Arb 17:1–337

    Google Scholar 

  • Wass SY (1979a) Multiple origins of clinopyroxenes in alkali basaltic rocks. Lithos 12:115–132

    Google Scholar 

  • Wass SY (1979b) Fractional crystallization in the mantle of latest-age kimberlitic liquids — evidence in xenoliths from the Kiama area, N.S.W., Australia. In: Boyd FR, Meyer HOA (eds) The mantle sample: Inclusions in kimberlites and other volcanics. Am Geophys Union, Washington DC, pp 266–373

    Google Scholar 

  • Wass SY (1980) Geochemistry and origin of xenolith-bearing and related alkali basaltic rocks from the Southern Highlands, New South Wales, Australia. Am J Sci 280A: 639–666

    Google Scholar 

  • Wass SY, Rogers NW (1980) Mantle metasomatism — precursor to continental alkaline volcanism. Geochim Cosmochim Acta 44:1811–1823

    Google Scholar 

  • Wass SY, Henderson P, Elliott CJ (1980) Chemical heterogeneity and metasomatism in the upper mantle: Evidence from rare earth and other elements in apatite-rich xenoliths in basaltic rocks from eastern Australia. Phil Trans R Soc Lond A 297:222–246

    Google Scholar 

  • Watson EB (1980) Apatite and phosphorus in the mantle source regions: An experimental study of apatite/melt equilibria at pressures to 25 kbar. Earth Planet Sci Lett 51:322–335

    Google Scholar 

  • Wilkinson JFG (1975) Ultramafic inclusions and high pressure megacrysts from a nephelinite sill, Nandewar Mountains, Northeastern New South Wales, and their bearing on the origin of certain ultramafic inclusions in alkaline volcanic rocks. Contrib Mineral Petrol 51:235–262

    Google Scholar 

  • Wilshire HG, Shervais JW (1975) Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from Western United States. In: Ahrens LW; Dawson JB, Duncan AR, Erlank AJ (eds) Physics and chemistry of the earth, vol. 9. Pergamon, Oxford, pp 257–272

    Google Scholar 

  • Wörner G, Schmincke HU (1984) Mineralogy and geochemical evolution of the Laacher See magma chamber. J Petrol 25:805–835

    Google Scholar 

  • Yagi K, Onuma K (1967) The join CaMgSi2O6-CaTiAl2O6 and its bearing on the titanaugites. J Fac Sci Hokkaido Univ Ser IV 13:463–483

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duda, A., Schmincke, H.U. Polybaric differentiation of alkali basaltic magmas: evidence from green-core clinopyroxenes (Eifel, FRG). Contr. Mineral. and Petrol. 91, 340–353 (1985). https://doi.org/10.1007/BF00374690

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00374690

Keywords

Navigation