Advertisement

Pflügers Archiv

, Volume 423, Issue 3–4, pp 280–290 | Cite as

p-Aminohippurate/2-oxoglutarate exchange in bovine renal brush-border and basolateral membrane vesicles

  • Christiane Schmitt
  • Gerhard Burckhardt
Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands

Abstract

The transport of the amphiphilic organic anion, P-aminohippurate (PAH), across the luminal (brush-border) and contraluminal (basolateral) membrane of renal proximal tubule cells was studied with membrane vesicles isolated from bovine kidney cortex. On the basis of the enrichment of specific activities of marker enzymes, leucine aminopeptidase and Na+/K+-ATPase, brush-border and basolateral membrane vesicles can be obtained from bovine kidneys in reasonably pure form. The uptake of [3H]PAH into both brush-border and basolateral membrane vesicles was trans-stimulated by intravesicular PAH and by 2-oxoglutarate. In the absence of Na+, [3H]PAH/2-oxoglutarate exchange was cis-inhibited by unlabelled 2-oxoglutarate in the medium. In the presence of an inward Na+ gradient, 10 μM 2-oxoglutarate, but no other Krebs cycle derivative, cis-stimulated [3H]PAH uptake, indicating that a Na3-coupled dicarboxylate transporter and PAH/2-oxoglutarate exchanger cooperate in both membranes to enhance [3H]PAH uptake. [3H]PAH uptake showed a non-saturable and a saturable component with similar apparent Km values in brush-border and basolateral membranes. Although one negatively charged PAH molecule exchanges with one doubly negatively charged 2-oxoglutarate molecule the exchange was electroneutral. Probenecid inhibited [3H]PAH/2-oxoglutarate exchange in brush-border and basolateral membrane vesicles with indistinguishable kinetics. We conclude that similar or identical PAH transporters are located in brush-border and basolateral membranes of bovine kidney proximal tubule cells. This arrangement seems species-specific since a Na+ gradient plus 2-oxoglutarate caused concentrative [3H]PAH uptake in brush-border membrane vesicles from bovine, but not from rat kidney.

Key words

P-Aminohippurate/2-oxoglutarate exchange Brush-border membrane Basolateral membrane Bovine kidney Proximal tubule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ammer U, Natochin Y, Ullrich KJ (1993) Tissue concentration and urinary excretion pattern of sulfofluorescein in the rat kidney. J Am Soc Nephrol 3:1474–1487Google Scholar
  2. 2.
    Benyajati S, Dantzler WH (1988) Enzymatic and transport characteristics of isolated snake renal brush-border membranes. Am J Physiol 255:R52-R60Google Scholar
  3. 3.
    Berner W, Kinne R (1976) Transport of p-aminohippuric acid by plasma membrane vesicles isolated from rat kidney cortex. Pflügers Arch 361:269–277Google Scholar
  4. 4.
    Biber J, Stieger B, Haase W, Murer H (1981) A high yield preparation for rat kidney brush border membranes. Different behaviour of lysosomal markers. Biochim Biophys Acta 647:169–176Google Scholar
  5. 5.
    Blomstedt JW, Aronson PS (1980) pH gradient-stimulated transport of urate and p-aminohippurate in dog renal microvillus membrane vesicles. J Clin Invest 65:931–934Google Scholar
  6. 6.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  7. 7.
    Burckhardt G (1984) Sodium-dependent dicarboxylate transport in renal basolateral membrane vesicles. Pflügers Arch 401:254–261Google Scholar
  8. 8.
    Burckhardt G, Schmitt C, Ullrich KJ (1991) p-Aminohippurate uptake across the basolateral membrane of rat proximal tubule cells: specificity and mode of energetization. In: Hatano M (ed) Nephrology, vol II. Springer, Tokyo, pp 1380–1390Google Scholar
  9. 9.
    Chatsudthipong V, Dantzler WH (1991) PAH-α-KG countertransport stimulates PAH uptake and net secretion in isolated snake renal tubules. Am J Physiol 261:F858-F867Google Scholar
  10. 10.
    Dawson MA, Renfro JL (1990) Organic anion secretion by winter flounder renal proximal tubule primary monolayer cultures. J Pharmacol Exp Ther 254:39–44Google Scholar
  11. 11.
    Eveloff J, Kinne R, Kinter WB (1979) p-Aminohippuric acid transport into brush border vesicles isolated from flounder kidney. Am J Physiol 237:F291-F298Google Scholar
  12. 12.
    Guggino SE, Martin GJ, Aronson PS (1983) Specificity and modes of the anion exchanger in dog renal microvillus membranes. Am J Physiol 244:F612-F621Google Scholar
  13. 13.
    Kahn AM, Aronson PS (1983) Urate transport via anion exchange in dog renal microvillus membrane vesicles. Am J Physiol 244:F56-F63Google Scholar
  14. 14.
    Kahn AM, Branham S, Weinman EJ (1983) Mechanism of urate and p-aminohippurate transport in rat renal microvillus membrane vesicles. Am J Physiol 245:F151-F158Google Scholar
  15. 15.
    Kinsella JL, Holohan PD, Pessah NI, Ross CR (1979) Transport of organic ions in renal cortical luminal and antiluminal membrane vesicles. J Pharmacol Exp Ther 209:443–450Google Scholar
  16. 16.
    Kippen I, Hirayama B, Klinenberg JR, Wright EM (1979) Transport of p-aminohippuric acid, uric acid and glucose in highly purified rabbit renal brush border membranes. Biochim Biophys Acta 556:161–174Google Scholar
  17. 17.
    Kuo SM, Austic RE (1987) Carrier-mediated transport of urate by chicken (Gallus domesticus) renal brush-border membrane vesicles. Comp Biochem Physiol 87A:587–595Google Scholar
  18. 18.
    Martin M, Ferrier B, Baverel G (1989) Transport and utilization of α-ketoglutarate by the rat kidney in vivo. Pflügers Arch 413:217–224Google Scholar
  19. 19.
    Martinez F, Manganel M, Montrose-Rafizadeh C, Werner D, Roch-Ramel F (1990) Transport of urate and p-aminohippurate in rabbit renal brush-border membranes. Am J Physiol 258:F1145-F1153Google Scholar
  20. 20.
    Miller DS, Pritchard JB (1991) Indirect coupling of organic anion secretion to sodium in teleost (Paralichthys lethostigma) renal tubules. Am J Physiol 261:R1470-R1477Google Scholar
  21. 21.
    Murer H, Manganel M, Roch-Ramel F (1992) Tubular transport of monocarboxylates, Krebs cycle intermediates, and inorganic sulfate. In: Windhager EE (ed) Handbook of physiology. Section 8. Renal physiology. Oxford University Press, New York, pp 2165–2188Google Scholar
  22. 22.
    Pritchard JB (1987) Luminal and peritubular steps in renal transport of p-aminohippurate. Biochim Biophys Acta 906: 295–308Google Scholar
  23. 23.
    Pritchard JB (1988) Coupled transport of p-aminohippurate by rat kidney basolateral membrane vesicles. Am J Physiol 255:F597-F604Google Scholar
  24. 24.
    Pritchard JB (1990) Rat renal cortical slices demonstrate p-aminohippurate/glutarate exchange and sodium/glutarate coupled p-aminohippurate transport. J Pharmacol Exp Ther 255:969–975Google Scholar
  25. 25.
    Pritchard JB, Miller DS (1992) Proximal tubular transport of organic anions and cations. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology. Raven Press, New York, pp 2921–2945Google Scholar
  26. 26.
    Roch-Ramel F, Besseghir K, Murer H (1992) Renal excretion and tubular transport of organic anions and cations. In: Windhager EE (ed) Handbook of physiology. Section 8. Renal physiology. Oxford University Press, New York, pp 2189–2262Google Scholar
  27. 27.
    Russel FGM, van der Linden PEM, Vermeulen WG, Heijn M, van Os CH, van Ginneken CAM (1988) Na+ and H+ gradientdependent transport of p-aminohippurate in membrane vesicles from dog kidney cortex. Biochem Pharmacol 37:2639–2649Google Scholar
  28. 28.
    Scalera V, Huang YK, Hildmann B, Murer H (1981) A simple isolation method for basal-lateral plasma membranes from rat kidney cortex. Membr Biochem 4:49–61Google Scholar
  29. 29.
    Schmitt C, Burckhardt G (1991) Renal p-aminohippurate (PAH) transport systems in rat and bovine kidney exhibit species differences. Pflügers Arch 419:R97Google Scholar
  30. 30.
    Sheikh MI, Møller JV (1982) Na+-gradient-dependent stimulation of renal transport of p-aminohippurate. Biochem J 208:243–246Google Scholar
  31. 31.
    Shimada H, Moewes B, Burckhardt G (1987) Indirect coupling to Na+ of p-aminohippurate uptake into rat renal basolateral membrane vesicles. Am J Physiol 253:F795-F801Google Scholar
  32. 32.
    Smith PM, Miller DS, Pritchad JB (1990) Sodium-coupled organic anion transport by Cancer borealis urinary bladder. Am J Physiol 259:R147-R156Google Scholar
  33. 33.
    Steffens TG, Holohan PD, Ross CR (1989) Operational modes of the organic anion exchanger in canine renal brush-border membrane vesicles. Am J Physiol 256:F596-F609Google Scholar
  34. 34.
    Tuppy H, Wiesbauer V, Wintersberger E (1962) Aminosäurep-nitroanilide als Substrate für Aminopeptidasen und andere proteolytische Fermente. Hoppe-Seyler's Z Physiol Chem 329:278–288Google Scholar
  35. 35.
    Ullrich KJ, Rumrich G (1988) Contraluminal transport systems in the proximal tubule involved in secretion of organic anions. Am J Physiol 254:F453-F462Google Scholar
  36. 36.
    Ullrich KJ, Fasold H, Rumrich G, Klöss S (1984) Secretion and contraluminal uptake of dicarboxylic acids in the proximal convolution of the rat kidney. Pflügers Arch 400:241–249Google Scholar
  37. 37.
    Ullrich KJ, Rumrich G, Fritzsch G, Klöss S (1987) Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney. I. Kinetics, influence of cations, anions, and capillary preperfusion. Pflügers Arch 409:229–235Google Scholar
  38. 38.
    Ullrich KJ, Rumrich G, Fritzsch G, Klöss S (1987) Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney. II. Specificity: aliphatic dicarboxylic acids. Pflügers Arch 408:38–45Google Scholar
  39. 39.
    Werner D, Roch-Ramel F (1991) Indirect Na+ dependence of urate and p-aminohippurate transport in pig basolateral membrane vesicles. Am J Physiol 261:F265-F272Google Scholar
  40. 40.
    Werner D, Martinez F, Roch-Ramel F (1990) Urate and p-aminohippurate transport in the brush border membrane of the pig kidney. J Pharmacol Exp Ther 252:792–799Google Scholar
  41. 41.
    Wright SH, Wunz TM (1987) Succinate and citrate transport in renal basolateral and brush-border membranes. Am J Physiol 253:F432-F439Google Scholar
  42. 42.
    Wright SH, Kippen I, Wright EM (1982) Stoichiometry of Na+-succinate cotransport in renal brush-border membranes. J Biol Chem 257:1773–1778Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Christiane Schmitt
    • 1
  • Gerhard Burckhardt
    • 1
  1. 1.Max-Planck-Institut für BiophysikFrankfurt/Main 70Germany

Personalised recommendations