Skip to main content

The relation of a particular chromosomal element to the development of the nucleoli in Zea mays

Summary

  1. 1.

    The nucleolus is organized in the telophase through the activity of a distinct deep-staining body having a definite position in one chromosome (the satellited chromosome) of the monoploid complement. Correlated with the number of satellited chromosomes present, the telophases of somatic tissue of haploids show one nucleolus, diploids, two nucleoli and triploids, three nucleoli. That the nucleolus develops through the activity of this body (refered to as the nucleolar-organizing body or element) was obtained from a reciprocal translocation which broke this body into two parts. Both interchanged chromosomes possessed a section. Nucleoli developed from each of these two segments. Thus, plants homozygous for the interchange developed four nucleoli in their somatic telophases; plants heterozygous for the interchange developed three nucleoli in their somatic telophases. Similarly, the telophase nucleoli resulting from the first division within the monoploid microspore of normal diploids show only one nucleolus, whereas, those of plants homozygous for the interchange are characterized by the development of two nucleoli.

  2. 2.

    The functional capacity to develop a nucleolus is not the same for both segments of the severed nucleolar-organizing body. This is evident when the two interchanged chromosomes are present in the same nucleus. The segment of the nucleolar-organizing body possessed by one interchanged chromosome produced a large nucleolus, whereas, the segment of the nucleolar-organizing body possessed by the other interchanged chromosome produced a small nucleolus. When this latter chromosome, with the nucleolar-organizing element of slower rate of functional capacity is present without the former (i. e. without a competing nucleolarorganizing element) it produces, in contrast, a large nucleolus.

  3. 3.

    The activity of the nucleolar-organizing element is hindered by certain genomic deficiencies. When this occurs, many small nucleolarlike bodies are produced and remain associated with the other chromosomes of the complement. These small nucleoli appear to develop from a swelling and later collection into droplets of the matrix substance of the chromosome.

This is a preview of subscription content, access via your institution.

Literature cited

  • Baranor, P.: Das Verhalten des Nucleolus von Galtonia candicans während der Reduktionsteilung. Ber. dtsch. bot. Ges. 43, 483–489 (1925).

    Google Scholar 

  • —: Zytologische und embryologische Untersuchungen an Drimiopsis maculata Lindl. Z. Zellforsch. 3, 131–148 (1926).

    Article  Google Scholar 

  • Creighton, H. B. and B. McClintock: A correlation of cytological and genetical crossing-over in Zea mays. Proc. Nat. Acad. Sci. U.S.A. 17, 492–497 (1931).

    CAS  Article  Google Scholar 

  • Dawydov, W.: Die Entwicklung des Kernes in den Zellen der Rochschen Organe im Zusammenhang mit den allgemeinen Grundsätzen des Baues des somatischen Kernes der Larve von Mycetobia pallipes Meig. Z. Zellforsch. 10, 625–641 (1930).

    Article  Google Scholar 

  • Dermen, H.: Origin and behavior of the nucleolus in plants. J. Arnold Arboretum 14, 282–319 (1933).

    Google Scholar 

  • Geitler, L.: Das Verhalten der Nukleolen in einer tetraploiden Wurzel von Crepis capillaris. Planta (Berl.) 17, 801–804 (1932).

    Article  Google Scholar 

  • Heitz, E.: Die Ursache der gesetzmäßigen Zahl, Lage, Form und Größe pflanzlicher Nukleolen. Planta (Berl.) 12, 775–844 (1931a).

    Article  Google Scholar 

  • —: Nukleolen und Chromosomen in der Gattung Vicia. Planta (Berl.) 15, 495–505 (1931b).

    Article  Google Scholar 

  • —: Die somatische Heteropyknose bei Drosophila melanogaster und ihre genetische Bedeutung. Z. Zellforsch. 20, 237–287 (1933).

    Article  Google Scholar 

  • Kaufmann, B. P.: Interchange between X- and Y-chromosomes in attached X-females of Drosophila melanogaster. Proc. Nat. Acad. Sci. U.S.A. 19, 830–838 (1933).

    CAS  Article  Google Scholar 

  • Kuhn, E.: Zur Zytologie von Thalictrum. Jb. Bot. 68, 382–430 (1928).

    Google Scholar 

  • Marshak, A. G.: The morphology of the chromosomes of Pisum sativum. Cytologia 2, 318–339 (1931).

    Article  Google Scholar 

  • McClintock, B.: A method for making aceto-carmin smears permanent. Stain. Tech. 4, 53–56 (1929).

    Article  Google Scholar 

  • —: Cytological observations of deficiencies involving known genes, translocations and an inversion in Zea mays. Missouri Agricult. Exper. Stat. Bull. 163, 1–30 (1931).

    Google Scholar 

  • —: The association of non-homologous parts of chromosomes in the mid-prophase of meiosis in Zea mays. Z. Zellforsch. 19, 191–237 (1933).

    Article  Google Scholar 

  • Metz, C. W.: Observations on spermatogenesis in Drosophila. Z. Zellforsch. 4, 1–28 (1927).

    Article  Google Scholar 

  • Mol, W. E. de: On chromosomal constrictions, satellites and nucleoli in Hyacinthus orientalis. Beitr. Biol. Pflanz. 15, 93–115 (1927a).

    Google Scholar 

  • —: Somatic segregation together with alteration of the chromosomal complement and of the nucleolar composition. Z. Abstammgslehre 45, 160–183 (1927b).

    Google Scholar 

  • —: Nucleolar number and size in diploid, triploid and aneuploid Hyancinths. Cellule 38, 1–64 (1927c).

    Google Scholar 

  • Nawaschin, M.: Morphologische Kernstudien der Crepis-Arten in bezug auf die Artbildung. Z. Zellforsch. 2, 98–111 (1925).

    Article  Google Scholar 

  • —: Über die Veränderung von Zahl und Form der Chromosomen infolge der Hybridisation. Z. Zellforsch. 6, 195–233 (1927).

    Article  Google Scholar 

  • Nawaschin, S.: Über den Dimorphismus der Zellkerne in den somatischen Zellen von Galtonia candicans. Bull. Acad. Sci. Petersbourg, VI s. 6, 373–385 (1912).

    Google Scholar 

  • —: Zellkerndimorphismus bei Galtonia candicans Des. und einigen verwandten Monokotylen. Vortrag von 1913 in Ber. dtsch. bot. Ges. 45, 415–428 (1927).

    Google Scholar 

  • Richards, A.: The history of the chromosomal vesicles in Fundulus and the theory of genetic continuity of chromosomes. Biol. Bull. (Wood's Hole) 32, 249–290 (1917).

    Article  Google Scholar 

  • Sax, K.: The cytological mechanism of crossing over. J. Arnold Arboretum 13, 180–212 (1932).

    Google Scholar 

  • Senjaninova, M.: Das Verhalten des Nukleolus und der Trabanten während der somatischen Mitosen und den Reifeteilungen bei Ranunculus acer L. Z. Zellforsch. 3, 417–430 (1926).

    Article  Google Scholar 

  • Smith, F. H.: The relation of the satellites to the nucleolus in Galtonia candicans. Amer. J. Bot. 20, 188–195 (1933).

    Article  Google Scholar 

  • Sorokine, H.: Satellites of somatic mitoses in Ranunculus acris L. Publ. Fac. Sci. Univ. Charles. 13, 1–15. Prague 1924.

    Google Scholar 

  • —: Idiograms, nucleoli, and satellites of certain Ranunculaceae. Amer. J. Bot. 16, 407–420 (1929).

    Article  Google Scholar 

  • Stevens, N. M.: Studies in spermatogenesis with special reference to the „accessory chromosome“. Publ. Carnegie Institut. of Washington (U.S.A.) 36, 1–32 (1905).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

National Research Council Fellow in the Biological Sciences.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McClintock, B. The relation of a particular chromosomal element to the development of the nucleoli in Zea mays. Z.Zellforsch 21, 294–326 (1934). https://doi.org/10.1007/BF00374060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00374060

Keywords

  • Slow Rate
  • Functional Capacity
  • Somatic Tissue
  • Reciprocal Translocation
  • Matrix Substance