Skip to main content
Log in

Simulated-microcarrier motion and its effect on radial medium transfer inside a horizontally rotating cylindrical bioreactor (HRCB) for animal cell culture

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The motion and distribution of microcarriers inside a horizontally rotating cylindrical bioreactor were simulated using spherical ion exchange resin particles. Particle motion deviated much from that expected under ideal conditions. The possible mass transfer enhancing effects of particle translation and cluster rotation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C kg/m3 :

solute concentration

D m2/s:

diffusion coefficient

d p m:

microcarrier diameter

J c kg m2/s:

solute flux due to cluster translation

J p kg m2/s:

solute flux due to particle translation

n l/m3 :

microcarrier number density

R m:

bioreactor radius

r m m:

mixing plane location

r 0 m:

trajectory radius

r c m:

cluster radius

r cc m:

radial position of cluster center

v g m/s:

particle settling velocity

x l/m3 :

cell concentration

X m:

current particle position on the rotating X axis

Y m:

current particle position on the rotating y axis

α :

liquid fraction actually conveyed by cluster rotation

β :

total associated liquid volume/reactor volume

γ 0 kg/(cell h):

specific oxygen consumption rate

Δr m:

half the distance between mixing planes

δ m:

cluster boundary layer thickness

ε :

microcarrier volume fraction

v m3/m2 :

volumetric flowrate per unit area of fluid in the rotating boundary layer

μ Pa s:

liquid viscosity

ρ kg/m3 :

density

τ max Pa:

maximum shear stress

ω l/min:

cylinder rotational speed

A :

particle A

A 0 :

initial position of particle A

B :

particle B

B 0 :

initial position of particle B

c :

cluster

cc :

cluster center

eq, c :

equivalent, cluster

eq, p :

equivalent, particle

f :

fluid

max :

maximum

0 :

initial

O 2 :

oxygen

p :

particle

r 0 + r m :

average radial position

r 0r m :

average radial position

References

  1. Katinger, H.; Scheirer, W.: Mass cultivation and production of animal cells in: Spier, R. E.; Griffiths, J. B. (Eds.): Animal Cell Biotechnology, vol. 1, 167–193. London: Academic Press. 1985

    Google Scholar 

  2. Griffiths, B.; Looby, D.: Fixed immobilized beds for the cultivation of animal cells. In: Ho, C. S.; Wang, D. I. C. (Eds.): Animal Cell Bioreactors, 171–172. Massachusetts: Butterworth-Heinemann. 1991

    Google Scholar 

  3. Griffiths, B.: Advances in animal cell immobilization technology. In: Spier, R. E.; Griffiths, J. B. (Eds.): Animal Cell Biotechnology, vol 4, 149–166. London: Academic Press. 1990

    Google Scholar 

  4. Griffiths, B.: Scaling-up of animal cell cultures. In: Freshney, R. I. (Ed.): Animal Cell Culture: A Practical Approach 33–69. Oxford: IRL Press. 1986

    Google Scholar 

  5. van Wezel, A. L.: Growth of cell strains and primary cells on micro-carriers in homogeneous culture. Nature. 216 (1967) 64–65

    Google Scholar 

  6. Spier, R. E.; Maroudas, N.: Microcarriers for animal cell biotechnology: An unfulfilled potential. In: Ho, C. S.; Wang, D. I. C. (Eds.): Animal Cell Bioreactors, 191–212. Massachusets: Butterworth-Heinemann. 1991

    Google Scholar 

  7. Cherry, R.; Papoutsakis, E.: Hydrodynamic effects on cells in agitated tissue culture reactors. Bioproc. Eng. 1 (1986) 29–41

    Google Scholar 

  8. Kariya, M.; Tozaki, C.: A new bioreactor: Horizontally rotating culture method. Hakkou to Kougyou, 47 (1987) 206–213 (in Japanese)

    Google Scholar 

  9. Tanaka, H.; et al.: Rotating drum fermentor for plant cell suspension cultures. Biotech. Bioeng., 25 (1983) 2359–2370

    Google Scholar 

  10. Voit, H.; Gotz, F.; Mersmann, A. B.: Overproduction of lipase with Staphylococcus carnosus (pLipPS1) under modified gravity in a centrifugal field bioreactor. Chem. Eng. Technol. 12 (1989) 364–373

    Google Scholar 

  11. Weidenbaum, S.: Mixing of solids. In: Drew and Hoopes (Eds.): Advances in Chemical Engineering, vol 2, 209–321. New York: Academic Press. 1958

    Google Scholar 

  12. Perry, R. H.; Green, D. W.; Maloney, J. O.: Perry's Chemical Engineering Handbook, 6th ed., p. 19–53. New York: McGraw-Hill. 1984

    Google Scholar 

  13. Clump, C.: Mixing of Solids. In: Uhl, V. W. and Gray, J. B. (Eds.): Mixing Theory and Practice. 263–286. New York Academic Press. 1967

    Google Scholar 

  14. Shirotsuka, T. (Ed.): Dictionary of chemical engineering., p. 541. Tokyo Maruzen. 1986 (in Japanese)

    Google Scholar 

  15. Stathopoulos, N. A.; Hellums, J. D.: Shear stress effects on human embryonic kidney cells in vitro. Biotechnol. Bioeng. 27 (1985) 1021–1026

    Google Scholar 

  16. Tramper, J.; Joustra, D.; Vlak, J. M.: Bioreactor design for the growth of shear-sensitive insect cells. In Webb, C.; Mavituna, F. (Eds.): Plant and Animal Cells Process Possibilities. 125–136. England Ellis Horwood. 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

delos Santos, B., Shiragami, N., Unno, H. et al. Simulated-microcarrier motion and its effect on radial medium transfer inside a horizontally rotating cylindrical bioreactor (HRCB) for animal cell culture. Bioprocess Engineering 10, 5–14 (1994). https://doi.org/10.1007/BF00373529

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00373529

Keywords

Navigation