Skip to main content
Log in

Molecular weight polydispersity effects on the melt viscoelasticity of styrene-acrylonitrile random copolymers

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A series of polydisperse SAN (styrene-co-acrylonitrile) random copolymers was studied by means of oscillatory rheometry in the rubbery plateau zone and in the terminal zone. The plateau modulus, the Newtonian viscosity, and the critical frequencies for the onset of non-Newtonian behavior were extracted from the experimental data. All these viscoelastic quantities consistently indicate that the tail of molecular weights below approximately M e (the entanglement spacing) acts as a solvent for the rest of the polymer with M>M e .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doi M, Graessley WW, Helfand E, Pearson DS (1987) Dynamics of polymers in polydisperse melts. Macromolecules 20:1900

    Google Scholar 

  2. Han CD (1988) Influence of molecular weight distribution of the linear viscoelastic properties of polymer blends. J Appl Polym Sci 35:167

    Google Scholar 

  3. Graessley WW (1974) The entanglement concept in polymers melt rheology. Fortschr Hochpolyme Forsch 16:1

    Google Scholar 

  4. Ferry JD (1980) Viscoelastic properties of polymers. 3rd Ed. Wiley, New York

    Google Scholar 

  5. Garcia Rubio LH, MacGregor JF, Hamielec AE (1983) Size exclusion chromatography of polymers. Adv Chem Ser 203:311

    Google Scholar 

  6. Wu S (1989) Chain structure and entanglement. J Polym Sci, Polym Phys Ed 27:723

    Google Scholar 

  7. Onogi S, Masuda T, Kitagawa K (1970) Rheological properties of anionic polystyrenes. I: Dynamic viscoelasticity of narrow distribution polystyrenes. Macromolecules 3:116

    Google Scholar 

  8. Lomellini P (1992) Chain length effect on the network modulus and entanglement. Polymer in press

  9. Lomellini P, Rossi AG (1990) Effect of composition on the entanglement density in random copolymers. Makromol Chem 191:1729

    Google Scholar 

  10. Wu S (1987) Entanglement, friction and free volume between dissimilar chains in compatible blends. J Polym Sci, Polym Phys Ed 25:2511

    Google Scholar 

  11. Lomellini P, Jehl P (1990) unpublished results

  12. Donald AM, Kramer EJ (1982) Effect of molecular entanglements on craze microstructure in glassy polymers. J Polym Sci, Polym Phys Ed 20:899

    Google Scholar 

  13. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, Oxford

    Google Scholar 

  14. McKenna GB, Hadzioannu G, Lutz P, Hild G, Strazielle C, Straupe C, Rempp P, Kovacs AJ (1987) Dilute solution characterization of cyclic polystyrene molecules and their zero-shear viscosity in the melt. Macromolecules 20:498

    Google Scholar 

  15. Colby RH, Fetters LJ, Graessley WW (1987) Melt viscosity — mulecular weight relationship for linear polymers. Macromolecules 20:2226

    Google Scholar 

  16. Fetters LJ, Graessley WW, Kiss AD (1991) Viscoelastic properties of polyisobutylene melts. Macromolecules 24:3136

    Google Scholar 

  17. Berry GC, Fox TG (1968) The visosity of polymers and their concentrated solutions. Adv Polym Sci 5:261

    Google Scholar 

  18. Richards WD, Prud'homme RK (1986) The viscosity of concentrated polymer solutions containing low molecular weight solvents. J Appl Polym Sci 31:763

    Google Scholar 

  19. Rendell RW, Ngai KL, McKenna GB (1987) Molecular weight and concentration dependences of the terminal relaxation time and viscosity of entangled polymer solutions. Macromolecules 20:2250

    Google Scholar 

  20. Pearson DS, Mera A, Rochefort WE (1981) Concentration dependence of the viscosity of polyisoprene solutions. Polym Preprints 22:102

    Google Scholar 

  21. Marin G, Menezes E, Raju VR, Graessley WW (1980) Proprieté viscoelastique linéaire de solutions de polibutadiéne en régime semi-dilué at concentré. Rheol Acta 19:462

    Google Scholar 

  22. Baillagou PE, Soong DS (1985) A viscosity constitutive equation for PMMA-MMA solutions. Chem Eng Comm 33:125

    Google Scholar 

  23. Zang YH, Muller R, Froelich D (1987) Influence of molecular weight distribution of viscoelastic constants of polymer melts in the terminal zone. New blending law and comparison with experimental data. Polymer 28:1577

    Google Scholar 

  24. Zang YH, Muller R, Froelich D (1988) Influence of molecular weight distribution of polymer melts on transition from Newtonian to non-Newtonian behaviour in shear flow. Polymer 29:646

    Google Scholar 

  25. Jehl P (1990) Molecular, thermal and viscoelastic characterization of styrene — acrylonitrile copolymers. Thesis, University Grenoble

  26. Kavassalis TA, Noolandi J (1988) Entanglement scaling in polymer melts and solutions. Macromolecules 22:2709

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lomellini, P., Lavagnini, L. Molecular weight polydispersity effects on the melt viscoelasticity of styrene-acrylonitrile random copolymers. Rheola Acta 31, 175–182 (1992). https://doi.org/10.1007/BF00373239

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00373239

Key words

Navigation