Skip to main content
Log in

Effects of downcomer-to-riser cross sectional area ratio on operation behaviour of external-loop airlift bioreactors

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Experiments performed in two external-loop airlift bioreactors of laboratory and pilot scale, (1.880–1.189) · 10−3 m3 and (0.170-0.157)m3, respectively, are reported. The A D /A R ratio was varied between 0.111–1.000 and 0.040–0.1225 in the laboratory and pilot contractor respectively.

Water and solutions of different coalescence (2-propanol 2% vol, 1 M Na (glucose 50% wt/vol) and rheological behaviour (non-Newtonian starch solutions with consistency index K=0.061–3.518 Pasn and flow behaviour index n=0.86-0.39), respectively, were used as liquid phase. Compressed air at superficial velocities v SGR =0.016–0.178 ms−1 in the laboratory contactor and v SGR =0.010–0.120 ms−1 in the pilot contactor, respectively was used as gaseous phase.

The A D /A R ratio affect gas-holdup behaviour as a result of the influence of A D /A R on liquid circulation velocity.

Experimental results show that A D /A R ratio affect circulation liquid velocity by modifying he resistence to flow and by varying the fraction of the total volume contained in downcomer and riser. A D /A R ratio has proven to be the main factor which determines the friction in the reactor. Mixing time increases with increasing of the reactor size and decreases with A D /A R decreasing.

The volumetric gas-liquid mass transfer coefficient increases with A D /A R ratio decreasing, as a result of variations of the liquid velocity with A D /A R , which affect interfacial areas.

Correlations applicable to the investigated contactors have been presented, together with the fit of some experimental data to existing correlation in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A D :

downcomer cross sectional area (m2)

A R :

riser cross sectional area (m2)

a :

coefficient in Eq. (9) (-)

a L :

gas-liquid interfacial area per unit volume (m−1)

b :

coefficient in Eq. (9) (-)

C :

tracer concentration (kg m−3)

C :

tracer concentration at the state of complete mixing (kg m−3)

c :

coefficient in Eq. (12)

c S :

coefficient in Eq. (5)

D D :

downcomer diameter (m)

D R :

riser diameter (m)

d B :

bubble size (m)

H D :

downcomer height (m)

H d :

dispersion height (m)

H L :

gas-free liquid height (m)

H R :

riser height (m)

I :

inhomogeneity (-)

K :

consistency index (Pa sn)

k L a :

volumetric gas-liquid oxygen mass transfer coefficient (s−1)

m :

exponent in Eq. (12) (-)

n :

flow behaviour index (-)

P G :

power input due to gassing (W)

t M :

mixing time (s)

V A :

connecting pipe volume (m3)

V D :

downcomer volume (m3)

V d :

volume of dispersion (m3)

V R :

riser volume (m3)

V T :

total reactor liquid volume (m3)

v SGR :

riser gas superficial velocity (m s−1)

ɛ GR :

riser gas holdup (-)

\(\dot \gamma \) :

shear rate (m s−1)

η app :

apparent viscosity (Pa s)

τ :

shear stress

References

  1. Bello, R.A.; Robinson, C.W.; Moo-Young, M.: Mass Transfer and Liquid Mixing in External-Circulation-Loop Contactors. In Advances in Biotechnology, vol. 1, eds. M. Moo-Young, C.W. Robinson and C. Vezina, Pergamon Press, Oxford (1981) 547–552

    Google Scholar 

  2. Hsu, Y.C.; Dudukovic, M.P.: Gas Holdup and Liquid Recirculation in Gas-Lift Reactors. Chem. Eng. Sci. 35 (1980) 135–141

    Google Scholar 

  3. Mercer, D.G.: Flow Characteristics of a Pilot Scale Airlift Fermentor. Biotechnol. Bioeng. 23 (1981) 2421–2431

    Google Scholar 

  4. Merchuk, J.C.; Stein, Y.: Local Holdup and Liquid Velocity in Airlift Reactors. AIChEJ. 27 (1981) 377–388

    Google Scholar 

  5. Popovic, M.; Robinson, C.W.: External-Circulation-Loop Airlift Bioreactors: Study of the liquid Circulating Velocity in Highly Viscous non-Newtonian Liquids. Biotechnol. Bioeng. 32 (1988) 301–312

    Google Scholar 

  6. Popovic, M.; Robinson, C.W.: Mass Transfer Studies of External-Loop Airlifts and a Bubble Column. AIChEJ. 35 (1989) 393–405

    Google Scholar 

  7. Verlaan, P.: Modelling and Characterization of an Airlift-Loop Bioreactor. PhD Thesis. University of Wageningen, Wageningen, 1987

    Google Scholar 

  8. Weiland, P.: Untersuchung eines Airliftreaktors mit äusserem Umlauf im Himblick auf seine Anwendung als Bioreactor. PhD Thesis University Dortmund, Dortmund, 1978

    Google Scholar 

  9. Barker, T.W.; Worgan, J.T.: Application of Airlift Fermenters to the Cultivation of Filamentous Fungi. Eur. J. Appl. Microbiol. Biotechnol. 13 (1981) 77–83

    Google Scholar 

  10. Blenke, H.: Loop Reactors. Adv. Biochem. Eng. 13 (1979) 121–214

    Google Scholar 

  11. Erickson, L.E.; Deshpande, V.: Gas Dispersion Characteristics in Airlift Fermentors. In Advances in Biotechnology, vol. 1, eds. M. Moo-Young, C.W. Robinson and C. Vezina. Pergamon Press, Oxford, 1981, pp. 553–558

    Google Scholar 

  12. Fields, P.R.; Slater, N.K.H.: Tracer Dispersion in a Laboratory Airlift Reactor. Chem. Eng. Sci. 38 (1983) 647–653

    Google Scholar 

  13. Jones, A.G.: Liquid Circulation in a Draft-Tube Bubble Column. Chem. Eng. Sci. 40 (1985) 449–462

    Google Scholar 

  14. Kawase, Y.; Moo-Young, M.: Liquid Circulation Time in ConcentricTube Airlift Columns with non-Newtonian Fermentation Broths. J. Chem. Technol. Biotechnol. 46 (1989) 267–274

    Google Scholar 

  15. Lans, van der, R.G.J.M.: Hydrodynamics of a Bubble Column Loop Reactor. PhD Thesis. Technical University Delft, Delft, 1985

    Google Scholar 

  16. Margaritis, A.; Sheppard, J.D.: Mixing Time and Oxygen Transfer Characteristics of a Double Draft-Tube Airlift Fermentor. Biotechnol. Bioeng. 23 (1981) 2117–2135

    Google Scholar 

  17. Wachi, S.; Jones, A.G.; Elson, T.P.: Flow Dynamics in a Draft-Tube Bubble Column using Various Liquids. Chem. Eng. Sci. 46 (1991) 657–663

    Google Scholar 

  18. Weiland, P.: Influence of Draft-Tube Diameter on Operation Behaviour of Airlift Loop Reactors. Ger. Chem. Eng. 7 (1984) 374–385

    Google Scholar 

  19. Chakravarty, M.; Begum, S.; Singh, H.; Baruah, J.N.; Iyengar, M.S.: Gas Holdup Distribution in a Gas-Lift Column. Biotechnol. Bioeng. Symp. 4 (1963) 363–378

    Google Scholar 

  20. Levenspiel, O.: Chemical Reaction Engineering, John Wiley & Sons, New York, 1972

    Google Scholar 

  21. Magearu, V.: Controlul analitic al proceselor biotechnologice, Editura Technica, Bucharest, 1988

    Google Scholar 

  22. Gavrilescu, M.; Roman, R.V.; Efimov, V.: Rheological Behaviour of Some Antibiotic Biosynthesis Liquids. Acta Biotechnol. 12 (1992) 383–396

    Google Scholar 

  23. Schumpe, A.; Deckwer, W.-D.: Viscous Media in Tower Bioreactors: Hydrodynamic Characteristics and Mass Transfer Properties Bioprocess Eng. 2 (1987) 79–94

    Google Scholar 

  24. Gavrilescu, M.; Tudose, R.Z.: Study of Liquid Circulation Velocity in External-Loop Airlift Reactors. Bioprocess Eng. 14 (1995) 33–39

    Google Scholar 

  25. Bello, R.A.; Robinson, C.W.; Moo-Young, M.: Gas Holdup and Overall Volumetric Oxygen Transfer Coefficient in Airlift Contactors. Biotechnol. Bioeng. 27 (1985) 369–381

    Google Scholar 

  26. Onken, U.; Weiland, P.: Liquid Velocity as an Important Parameter for Airlift-Loop Fermentors. In Advances in Biotechnology, eds. M. Moo-Young, C.W. Robinson and C. Vezina. Pergamon Press, Oxford (1981) 559–564

    Google Scholar 

  27. Bello, R.A.; Robinson, C.W.; Moo-Young, M.: Liquid Circulation Velocity and Mixing Characteristics of Airlift Contactors. Can. J. Chem. Eng. 62 (1984) 573–577

    Google Scholar 

  28. Chisti, M.Y.: Airlift Bioreactors, Elsevier Applied Science, London-New York, 1989

    Google Scholar 

  29. Gavrilescu, M.; Tudose, R.Z.: Mixing Studies in External-Loop Airlift Reactors. Submitted for publication in J. Chem. Eng. (London), 1995

  30. Bello, R.A.; Robinson, C.W.; Moo-Young, M.: Prediction of the Volumetric Mass Transfer Coefficient in Pneumatic Contactors. Chem. Eng. Sci. 40 (1985) 53–58

    Google Scholar 

  31. Roman, R.V.; Gavrilescu, M.; Sauciuc, A.; Asandului, V.; Pintilie, A.; Pascal, A.: Mass Transfer and Gas-Liquid Dispersion in an ExternalLecycling (Airlift) Bioreactor, Paper presented at the Symposium Interbiotech '89, Bratislava, Czechoslovakia, 28–30 June, 1989

  32. Kawagoe, M.; Robinson, C.W.: Characteristics of Airlift Column with External Liquid Circulation, Paper presented at the 14th Autumn Meeting of Chemical Engineers, Yokohama, Japan, 14–16 October, 1980

  33. Popovic, M.; Robinson, C.W.: Estimation of some important Design Parameters for non-Newtonian Liquids in Pneumatically — Agitated Fermenters, Proceedings of the 34th Canadian Engineering Conference, Sept. 30–Oct. 3, Quebec City (1984) 258–263

  34. Gavrilescu, M.; Roman, R.V.; Sauciuc, A.: Oxygen Mass Transfer in Airlift Bioreactors using Static Mixers. Biotechnol. BioE. (Bulgaria). 6 (1992) 60–64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilescu, M., Tudose, R.Z. Effects of downcomer-to-riser cross sectional area ratio on operation behaviour of external-loop airlift bioreactors. Bioprocess Engineering 15, 77–85 (1996). https://doi.org/10.1007/BF00372981

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00372981

Keywords

Navigation