Skip to main content
Log in

Evaluation of kinetic parameters and thermodynamic quantities of starch hydrolysate alcohol fermentation by Saccharomyces cerevisiae

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The kinetic parameters and thermodynamic quantities of corn starch hydrolysate fermentation by Saccharomyces cerevisiae are evaluated following two different approaches and using the experimental data of batch fermentations carried out at different temperatures. The former approach, that is based on the Arrhenius equation, allows for the separate calculations of thermodynamic quantities referred to the transition states of both alcohol fermentation and thermal deactivation. The latter, supposing the existence of an instantaneous equilibrium between active and inactive forms of the biocatalyst, includes all these quantities in the same relationship. The results obtained in this study suggest that the simple activated-complex theory is inadequate to the kinetic and thermodynamic description of a process using microorganisms, while the so-called “thermodynamic approach” can represent a promising alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A 1/h:

Arrhenius pre-exponential factor of fermentation

B 1/h:

Arrhenius pre-exponential factor of thermal deactivation in eq. (5)

C :

entropy contribution appearing in eq. (12)

e g/l:

enzyme concentration

E :

enzyme

E * kJ/mol:

empirical activation energy of fermentation

E *′ kJ/mol:

energy term in eq. (5)

E *d kJ/mol:

empirical activation energy of thermal deactivation

h kJ·h:

Planck's constant

k 1/h:

reaction rate constant

k B kJ/K:

Boltzmann's constant

P g/l:

alcohol concentration

RkJ/mol·K:

ideal gas constant

t h:

fermentation time

T K:

absolute temperature

X g/l:

cell mass concentration

μ 1/h:

specific growth rate

ν 1/h:

specific productivity

ΔH * kJ/mol:

activation enthalpy of fermentation

ΔH * D kJ/mol:

activation enthalpy of thermal deactivation

ΔH 0 D kJ/mol:

standard variation of thermal deactivation enthalpy

ΔG * kJ/mol:

activation free enthalpy of fermentation

Δ * D kJ/mol:

activation free enthalpy of thermal deactivation

ΔG 0kJ/mol:

standard variation of thermal deactivation free enthalpy

ΔS * kJ/mol·K:

activation entropy of fermentation

ΔS * D kJ/mol·K:

activation entropy of thermal deactivation

ΔS 0 D kJ/mol·K:

standard variation of thermal deactivation entropy

max:

maximum value

opt:

optimal value

N :

native form of the enzyme

D :

deactivated form of the enzyme

0 :

total or starting value

References

  1. Henley, J.P.; Sadana, A.: Graphical determination of mean activation energy and standard deviation in a microheterogeneity model of enzyme deactivation. Biotechnol. Bioeng. 34 (1989) 916–925

    Google Scholar 

  2. Malhotra, A.; Sadana, A.: Effect of activation energy microheterogeneity on first-order enzyme deactivation. Biotechnol. Bioeng. 30 (1987) 108–116

    Google Scholar 

  3. Aiba, S.; Humphrey, A.E.; Millis, N.F.: Biochemical Engineering, 2nd ed., Academic Press, New York and London, (1973) 93–117

    Google Scholar 

  4. Cooney, C.L.: Growth of microorganisms. In Biotechnology, Vol. 1, (Rehm, H.-J., Reed, G., eds) Verlag Chemie, Weinheim, (1981) 28–100

    Google Scholar 

  5. Roels, J.A.: Energetics and kinetics in biotechnology, Elsevier Biomedical, Amsterdam, (1983) 163–203

    Google Scholar 

  6. Dubey, A.K.; Bisaria, V.S.; Mukhopadhyay, S.N.; Ghose, T.K.: Stabilization of restriction endonuclease BamHi by cross-linking reagents. Biotechnol. Bioeng. 33 (1989) 1311–1316

    Google Scholar 

  7. Pinto, I.; Cardoso, H.; Leão, C.; van Uden, N.: High enthalpy and low enthalpy deaths in Saccharomyces cerevisiae induced by acetic acid. Biotechnol. Bioeng. 33 (1989) 1350–1352

    Google Scholar 

  8. Sá-Correia, I.; van Uden, N.: Ethanol-induced death of Saccharomyces cerevisiae at low and intermediate growth temperatures. Biotechnol. Bioeng. 28 (1986) 301–303

    Google Scholar 

  9. Slininger, P.J.; Bothast, R.J.; Ladisch, M.R.; Okos, M.R.: Optimum pH and temperature conditions for xylose fermentation by Pichia stipitis. Biotechnol. Bioeng. 35 (1990) 727–731

    Google Scholar 

  10. Ciftci, T.; Constantinides, A.; Wang, S.S.: Optimization of conditions and cell feeding procedures for alcohol fermentation. Biotechnol. Bioeng. 25 (1983) 2007–2023

    Google Scholar 

  11. Baily, J.E.; Ollis, D.F.: Biochemical engineering fundamentals, 2nd ed., McGraw Hill (1986)

  12. Al-Asheh, S.; Duvniak, Z.: Characteristics of phytase produced by Aspergillus carbonarius NRC 401121 in canola meal. Acata Biotechnologica 14 (1994) 223–233

    Google Scholar 

  13. Saucedo-Castañeda, G.; Gutiérrez-Rojas, M.; Bacquet, G.; Raimbault, M.; Viniegra-González, G.: Heat transfer simulation in solid substrate fermentation. Biotechnol. Bioeng. 35 (1990) 802–808

    Google Scholar 

  14. Bergmeyer, H.U.; Bernt, E.: Methoden der enzymatischen Analyse, Vol. 2, Verlag Chemie, Weinheim, (1974) 1121

    Google Scholar 

  15. Frost, A.A.; Pearson, R.G.: Kinetics and mechanism, 2nd ed., Wiley, New York, (1963) 98–100

    Google Scholar 

  16. Sizer, I.W.: Temperature activation and inactivation of the crystalline catalase-hydrogen peroxide system. J. Biol. Chem. 154 (1944) 46114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Converti, A., Bargagliotti, C., Cavanna, C. et al. Evaluation of kinetic parameters and thermodynamic quantities of starch hydrolysate alcohol fermentation by Saccharomyces cerevisiae. Bioprocess Engineering 15, 63–69 (1996). https://doi.org/10.1007/BF00372979

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00372979

Keywords

Navigation