Skip to main content
Log in

The B.E.M. in plane elastic bodies with cracks and/or boundaries of fractal geometry

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The scope of the present paper is to present a method which examines the influence of the fractal geometry on the stress and strain fields in cracked plane elastic bodies through a B.E. scheme combined with an iterative approximation procedure. The method proposed here is based on the description of the fractal as the attractor of a deterministic or a random iterated function system. It is an iterative method which approximates the fractal boundary by classical C 1-curves in order to avoid additional singularities. The method proposed may be seen as an extension of the classical B.I.E.M. to the case of bodies having cracks and/or boundaries of fractal geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antes, H.; Panagiotopoulos, P. D. 1992: The boundary integral approach to static and dynamic contact problems. Equality and inequality methods. Basel: Birkhäuser Verlag

    Google Scholar 

  • Barnsley, M. 1988: Fractals everywhere. Boston, New York: Academic Press

    Google Scholar 

  • Blandford, G. E., Ingraffea, A. R.; Liggett, J. A. 1981 Two dimensional stress intensity factor computations using the boundary element method. Int. J. for Numerical Methods in Engineering, 17: 387–404

    Google Scholar 

  • Cruse, T. A. 1969: Numerical solutions in three-dimensional elastostatics. Int. J. Solids and Struct. 5, 1259–1274

    Google Scholar 

  • Cruse, T. A. Van Buren, W. 1971: Three-dimensional elastic stress analysis of a fractured speciment with an edge crack. Intern. J. Fract. Mech. 7: 1–15

    Google Scholar 

  • Cruse, T. A. 1973: Applications of the boundary integral equation method to three-dimensional stress analysis.; Comp. and Struct. 3: 509–527

    Google Scholar 

  • Falconer, K. J. 1985: The geometry of fractal sets. Cambridge: Cambridge Univ. Press

    Google Scholar 

  • Feder, J. 1988: Fractals. New York: Plenum Press

    Google Scholar 

  • Gol'dshtein, R.; Mosolov, A. 1992: Fractal cracks. J. Appl. Maths. Mechs. 56(4): 563–571

    Google Scholar 

  • Grisvard, P. 1985: Elliptic problems in nonsmooth domains. Pitman, Publ. Ltd., London

    Google Scholar 

  • Hutchinson, J. F. 1981: Fractals and selfsimilarity. Indiana Univ. J. of Math. 30: 713–747

    Google Scholar 

  • Jonson, A.; Wallin, H. 1984: Function spaces on subsets of ℝn Math. Report. 2. London: Harwood Acad. Publ

    Google Scholar 

  • Le Méhauté, A. 1990: Les géométries fractales. Lermes, Paris

  • Léné, F. 1974: Sur les matériaux élastiques énergie de déformation non quadratique. J. de Mécanique. 13: 499–534

    Google Scholar 

  • Mandelbrot, B. 1972. The fractal geometry of nature. New York: W. H. Freeman and Co.

    Google Scholar 

  • Massopust, P. R. 1993: Smooth interpolating curves and surfaces generated by iterated function systems. Zeitschrift für Analysis und ihre Anwendungen, 12: 201–210

    Google Scholar 

  • Mistakidis, E. S., Panagiotopoulos, P. D.; Panagouli, O. K. 1992: Fractal surfaces and interfaces in structures. Methods and algorithms. Chaos Solitons and Fractals. 2(5): 551–574

    Google Scholar 

  • Moreau, J. J.; Panagiotopoulos, P. D. 1989: Nonsmooth Mechanics and Applications In Moreau, J. J. and Panagiotopoulos, P. D. (ed): CISM Lect. Notes, Vol. 302. New York: Springer-Verlag

    Google Scholar 

  • Moreau, J. J., Panagiotopoulos, P. D.; Strang, G. 1988: topics in nonsmooth mechanics. Basel: Birkhäuser Verlag

    Google Scholar 

  • Nečas, J., Jarusek, J. and Haslinger, J.; 1980: On the solution of the variational inequality to the Signorini problem with small friction. Bulletino. U.M.I. 17B: 796–811

    Google Scholar 

  • Panagiotopoulos, P. D. 1975: A nonlinear programming approach to the unilateral contact- and friction- boundary value problem in the theory of elasticity. Ing. Archiv. 44: 421–432

    Google Scholar 

  • Panagiotopoulos, P. D. 1978: A variational inequality approach to the friction problem of structures with convex energy density and application to the frictional unilateral contact problem. J. Struct. Mech. 6: 303–318

    Google Scholar 

  • Panagiotopoulos, P. D. 1983: Nonconvex energy functions Hemivariational inequalities and substationarity principles. Acta Mechanica. 42: 160–183

    Google Scholar 

  • Panagiotopoulos, P. D. 1985: Inequality problems in mechanics and applications. Convex and nonconvex energy functions. Basel: Birkhäuser Verlag. (Russian Translation 1985: Moscow MIr Publ).

    Google Scholar 

  • Panagiotopoulos, P. D. 1990a: On the fractal nature of mechanical theories. ZAMM. 70: 258–260

    Google Scholar 

  • Panagiotopoulos, P. D. 1990b: Fractals in mechanics. In: Schneider, W.; Troger, H.; Ziegler, F. (ed): Trends in applications of pure mathematics to mechanics STAMM 8 London: Longman Scientific and Technical Press

    Google Scholar 

  • Panagiotopoulos, P. D. 1991: Coercive and semicoercive hemivariational inequalities. Nonlinear Analysis T.M.A. 16: 209–231

    Google Scholar 

  • Panagiotopoulos, P. D. 1992a: Fractal geometry in solids and structures. Int. J. Solids and Structures. 29(17): 2159–2175

    Google Scholar 

  • Panagiotopoulos, P. D. 1992b: Fractals and fractal approximation in structural mechanics. Meccanica. 27: 25–33

    Google Scholar 

  • Panagiotopoulos, P. D.; Panagouli, O. K. 1992: Fractal interfaces in structures. Comp. and Struct. 452: 369–380

    Google Scholar 

  • Panagiotopoulos, P. D. 1993: Hemivariational inequalities and their applications in mechanics and engineering. Berlin: Springer Verlag

    Google Scholar 

  • Panagiotopoulos, P. D., Mistakidis, E. S.; Panagouli, O. K. 1992: Fractal interfaces with unilateral contact and friction conditions. Computer Methods in Applied Mechanics and Engineering. 99: 395–412

    Google Scholar 

  • Panagiotopoulos, P. D., Panagouli, O. K.; Mistakidis, E. S. 1993: Fractal geometry and fractal material behaviour in solids and structures. Archive of Applied Mechanics 63: 1–64

    Google Scholar 

  • Panagiotopoulos, P. D., Panagouli, O. K.; Mistakidis, E. S. 1994: On the consideration of the geometric and physical fractality in solid Mechanics. I. Theoretical results. ZAMM, 74(3): 167–176

    Google Scholar 

  • Panagouli, O. K., Panagiotopoulos, P. D.; Mistakidis, E. S. 1992: On the numerical solution of structures with fractal geometry: The FE approach. Meccanica. 27: 263–274

    Google Scholar 

  • Takayasu, H. 1990: Fractals in the physical sciences. Manchester: Manchester Univ. Press

    Google Scholar 

  • Wallin, H. 1989a: Interpolating and orthogonal polynomials on fractals. Constr. Approx. 5: 137–150

    Google Scholar 

  • Wallin, H. 1989b: The trace to the boundary of Sobolev spaces on a snowflake. Rep. Dep. of Math., Univ. of Umea, Sweden

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Antes and T. A. Cruse, 7 July 1994

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panagiotopoulos, P.D., Panagouli, O.K. & Koltsakis, E.K. The B.E.M. in plane elastic bodies with cracks and/or boundaries of fractal geometry. Computational Mechanics 15, 350–363 (1995). https://doi.org/10.1007/BF00372273

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00372273

Keywords

Navigation