Skip to main content
Log in

Progress on the boundary element method to study the disturbance fields of bodies moving in an unbounded medium

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

For studying flow problems involved with complex physics it is now common to use numerical field methods for solving Navier-Stokes or Euler equations. However, for a large class of fluid mechanics problems, which can be dealt with linearized potential equations, the boundary element method proves to be quite useful, especially for its easy application and relatively less computational effort compared to the field methods. The boundary element method has undergone some significant advancements in the last decade with respect to the study of steady and unsteady flow problems concerning wing aerodynamics in compressible medium, flow fields of propellers and rotors and acoustical disturbance propagation from moving bodies. In this paper a few recent contributions which evolved in the DLR as research projects and as doctoral and diploma thesis of the Technical University Braunschweig are concisely described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Sound velocity

b :

Span of a wing

c p :

Coefficient of static pressure

c dp :

Coefficient of profile drag

c 1, c d, cm :

Coefficient of lift, drag and moment per unit span width

c L, cD, cM :

Total lift, drag and moment-coefficients

c T, cP :

Thrust and power-coefficient of a propeller

d :

Distance

D:

Doublet strength

e :

Specific heat energy

E :

Total energy in a moving medium element

f :

Frequency

F :

Field point

g :

Gravitational acceleration

h :

Radial distance in cylinder coordinates

I 1, I 2 :

Inducing functions

i, j, k :

Unit vectors in cartesian coordinates

k :

Wave number [ω/a ]

l :

Local wing-chord

l 0, l v :

Length of singularity element at t oand t v

m :

Notation for Fourier-component

M, M * :

Mach number based on local and critical sound speed

n :

Number of rotation per second

n:

Unit normal vector to a surface

References

  • Ahmed, S. R. 1973: Berechnung des reibungslosen Strömungsfeldes von dreidimensionalen auftriebsbehafteten Tragflügeln, Rümpfen und Flügel-Rumpf-Kombinationen nach dem Panel-Verfahren, Deutsche Luft- und Raumfahrt, Forschungsbericht 73–102

  • Basu, B. C.; Hancock, G. J. 1978: The Unsteady Motion of a Two-Dimensional Aerofoil in Incompressible Inviscid Flow, Journal Fluid Mechanics 87(1); 159–178

    Google Scholar 

  • Biermann, D.; Hartmann, E. P. 1940: Wind-Tunnel Tests of Four- and Six-Blade Single and Dual-Rotating Tractor Propellers, NACA Rep. No. 747

  • Biermann, D.; Gray, W. H. 1941: Wind-Tunnel Tests of Eight-Blade Single and Dual-Rotating Propellers in the Tractor Position, NACA ARR

  • Boswell, R. J. 1971: Design, Cavitation Performance, and Open-Water Performance of a Series of Research Skewed Propellers, NSRDC Report No. 3339

  • Bratt, J. B. 1953: Flow Patterns in the Wake of oscillating airfoil, R & M 2773, Royal Aeronautical Establishment, Great Britain

    Google Scholar 

  • Crispin, Y. 1982: Unsteady Rotor aerodynamics using a Vortex panel method, AIAA-82-1348, NASA Ames Research Center, Moffet field, CA, AIAA 9th Atmospheric flight mechanics Conference, August 9–11, San Diego, CA.

    Google Scholar 

  • Das, A. 1977: Some basic and New Aspects on the Disturbance fields of Unsteady Singularities in Uniform Motion, AGARD CP No. 227, Unsteady Aerodynamics, Paper No. 6, pp. 1–31

  • Das, A. 1984: Wave Propagation from moving singularities and a unified exposition of the linearized Theory for Aerodynamics and Acoustics, DFVLR-FB 84-17

  • Das, A. 1984: A Unified Approach for the Aerodynamics and Acoustics of Propellers in Forward Motion, AGARD-CPP-366, pp. 9.1–9.28

    Google Scholar 

  • Das, A. 1987: On the kutta condition for flows around lifting aerofoils and wings, DLR-FB 87-40

  • Djojodihardjo, R. H.; Widnall, S. E. 1969: A Numerical Method for the Calculation of non-linear, unsteady lifting potential flow problems, AIAA-Journal, 7(10): 2001–2009

    Google Scholar 

  • Dobrzynski, W.; Heller, H. H.; Powers, J. O.; Densmore, J. E. 1986: DFVLR/FAA Propeller noise tests in the german-dutch wind tunnel DNW, DFVLR-IB 129-86/3, FFA-Report No. AEE 86-3

  • Farassat, F. 1981: Linear acoustic formulas for calculation of rotating blade noise, AIAA-Journal 19, pp. 1122–1130

    Google Scholar 

  • Ffowcs-Williams, J. E.; Hawkings, D. 1969: Sound generation by turbulence and surface in arbitrary motion, Phil. Trans. Roy. Soc. A 264: 321–342

    Google Scholar 

  • Fornasier, L. 1983: Calculation of supersonic flow over realistic configurations by an updated low-order panel method, AIAA-83-0010

  • Garrick, I. E.; Watkins, C. E. 1954: A theoretical study of the effects of forward speed on the free-space sound pressure field around propellers, NACA TR 1198

  • Giesing, J. P. 1968: Nonlinear Two-Dimensional unsteady potential flow with lift, Journal of Aircraft, Vol. 5, No. 2

  • Hanson, D. B. 1985: Compressible lifting surface theory for propeller performance calculations, Journal of Aircraft, 8: 19–27

    Google Scholar 

  • Herrmann, U. 1988: Erweiterung eines Dipolleiter-Verfahrens zur Berechnung der instationären Lastverteilung auf Propellerblättern bei nichtaxialer Anströmung im inkompressiblen medium, Diplomarbeit, TU Braunschweig

  • Hess, J. L.; Smith, A. M. O. 1967: Calculation of potential flows about arbitrary bodies, progress in aeronautical sciences Pergamon Press, 8: 1–138

  • Hess, J. L.; Valarezo, W. O. 1985: Calculation of steady flow about propellers by means of a surface panel method, AIAA-Paper 85-0283

  • Hoijemakers, H. W. M. 1982: A panel method for the prediction of aerodynamic characteristics of complex configurations in linearized subsonic or supersonic flow, Missile aerodynamics, AGARD CP-336

  • Holst, T. 1979: Implicit algorithm for the conservative transonic full-potential equation using an arbitrary mesh, AIAA-Journal 17(10): 1038–1045

    Google Scholar 

  • Jameson, A.; Caughey, D. A. 1977: A finite volume method for Transonic potential flow calculations, AIAA-Paper 77-635

  • Jameson, A.; Schmidt, W.; Turkel, E. 1981: Numerical simulation of the Euler equations by Finite Volume Method using Runge-Kutta Time Stepping Schemes, AIAA-Paper 81-1259

  • Jones, W. P.; Moore, J. A. 1973: Simplified aerodynamic theory of oscillating thin surfaces in subsonic flow, AIAA-Journal 11: 1305–1309

    Google Scholar 

  • Kim, K. H.; Kobayashi, S. 1984: Pressure distribution on propeller blade surface using numerical lifting-surface theory, Proc. SNAME Symp. Propellers 84, Virginia Beach

  • Kohlmeier, H. H. 1984: Eine direkte Berechnungsmethode für Störfelder bewegter Körper in kompressiblen Medien bei Unterschall-Machzahlen, Dissertation, TU Braunschweig

  • Kondo, K. 1957: On the potential-theoretical fundamentals of the aerodynamics of screw propellers at high Speed, Journal of the faculty of engineering, University of Tokyo, 25: 1–36

    Google Scholar 

  • Kraus, W.; Sacher, P. 1973: Das Panelverfahren zur Berechnung der Druckverteilung von Flugkörpern im Unterschall, ZFW, 21: 301–311

    Google Scholar 

  • Labrujere, Th.; Loeve, W.; Sloof, J. W. 1970: An approximate method for calculation of the pressure distribution on wing-body combinations at sub-critical speeds, AGARD Conf. Proceedings No. 71

  • Lamb, H. 1895: Hydrodynamics, 2nd Edition, Cambridge, Cambridge University Press

    Google Scholar 

  • Lax, P. D.; Wendroff, B. 1966: System of Conservation Laws, Comm Pure & Appl. Math., 13: 217–237

    Google Scholar 

  • MacCormack, R. 1982: A Numerical method for solving the equations of compressible viscous flow, AIAA-Journal, 20: 1275–1281

    Google Scholar 

  • Lighthill, M. J. 1952: On sound generated aerodynamically, I. General theory, Proc. Roy. Soc. A 211: 564–587

    Google Scholar 

  • Liepmann, H. W.; Roshko, A. 1957: Elements of Gasdynamics, New York, John Wiley

    Google Scholar 

  • Lohmann, D. 1992: Prediction of ducted radiator Fan Aeroacoustics with a lifting surface method, DGLR/AIAA 14th Aeroacoustic conference, Aachen, Germany, Volume II, AIAA No. 92-02-098, pp. 576–606

  • Lowson, M. V. 1965: The sound field of singularities in motion, Proc. Roy. Soc. A 286: 559–592

    Google Scholar 

  • Maynard, J. D.; Murphy, M. P. 1950: Pressure distribution on the blade sections of the NACA 10(3:: (066)-033 Propeller under operation conditions, NACA RM L9L12

  • Morino, L.; Chen, L. T.; Sucio, E. O. 1975: Steady and Oscillatory subsonic and supersonic aerodynamics around complex configurations, AIAA-Journal 13: 368–374

    Google Scholar 

  • Morino, L.; Tseng, K. 1990: A general theory of unsteady compressible potential flows with applications to aeroplanes and rotors, Developments in boundary element methods Vol. 6, Elsevier Apl. Sci. Publishers, Barking UK

    Google Scholar 

  • Murman, E. M., Cole, J. D. 1971: Calculation of plane steady transonic flows, AIAA-Journal, 9(1): 114–121

    Google Scholar 

  • Rangwalla, A. A. 1986: Application of a potential code to general unsteady flows in three dimensions, Dissertation Iowa State University Ames, Iowa

  • Röttgermann, A.; Behr, R.; Schöttl, Ch.; Wagner, S. 1991: Calculation of Blade-Vortex Interaction of Rotary Wing in Incompressible flow by an Unsteady Vortex-Lattice Method including free wake analysis, In Hackbusch, W., Edtitor, notes on numerical fluid mechanics, 153–166, Vieweg Verlag, Braunschweig

    Google Scholar 

  • Rubbert, P. E.; Saaris, G. R. 1967: A general method for determining the characteristics of Fan-in-Wing, USA AVLABS Technical Report, No. 67-61A

  • Sarin, S. L. 1993: Comparative investigation of predictive capability of aeroacoustic methods for single rotation Propellers, GARTEUR AG12

  • Schlichting, H.; Truckenbrodt, E. 1960: Aerodynamik des flugzeuges, Bd. 1 und 2, Berlin, Springer-Verlag

    Google Scholar 

  • Schöne, J. 1989: Ein Tragflächenverfahren zur Berechnung stationärer und instationärer, inkompressibler Propellerumströmung, DFVLR-FB 89-04, 117 pages, 1984, Dissertation TU Braunschweig

  • Summa, J. M. 1974: Potential flow about three-dimensional streamline lifting configurations with application to wings and Rotor, AFOSR-TR-74-1914, Dept. of Aeronautics and Astronautics, Stanford University, Stanford California, SUDAAR No. 485

    Google Scholar 

  • Tietjens, O. 1960: Strömungslehre, Erster band, Berlin, Springer-Verlag

    Google Scholar 

  • Vidjaja, V. T. 1993: Berechnung der instationären inkompressiblen Strömung um Tragflügel und Rotor im Vorwärtsflug, Diplomarbeit 93-01, DLR Braunschweig und TU Braunschweig

  • Woodward, F. A. 1968: Analysis and design of wing-body combinations at subsonic and supersonic speeds, Journal of Aircraft Vol 5, No. 6

  • Zierep, J. 1963: Vorlesungen über theoretische Gasdynamik, Bd. I und II, Karlsruhe, G. Braun, Verlag

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Antes and T. A. Cruse, 10 August 1994

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, A., Ahmed, S.R. Progress on the boundary element method to study the disturbance fields of bodies moving in an unbounded medium. Computational Mechanics 15, 315–333 (1995). https://doi.org/10.1007/BF00372270

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00372270

Keywords

Navigation