Skip to main content
Log in

Trace elements behavior in granite genesis: A case study The calc-alkaline plutonic association from the Querigut complex (Pyrénées, France)

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The different granitoids of the zoned Querigut complex (Hercynian Pyrenees) are associated with a series of basic to intermediate rocks ranging from hornblende-bearing peridotites to quartz-diorites. The whole complex appears as a calc-alkaline plutonic suite typical of orogenic zones. The distribution of lanthanides and other trace elements amongst coexisting minerals indicate they are essentially held by accessory phases, particularly in granitoids. This restricts the use of those elements in the calculation of petrogenetic models for acidic plutonic rocks. Magmatic differentiation, mainly by hornblende + plagioclase fractionation, can produce the basic series. This differentiation cannot directly produce the different granitoids, which require a preponderant contribution of crustal melts. The sequence of different granitoids can be explained either by an heterogeneity in the source region, or by magmatic differentiation. The most plausible interpretation of the whole complex calls for the emplacement of a mantle-derived magma into a wet, anatectic continental crust, with interactions between basic rocks and the soproduced acidic melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albuquerque CAR De (1978) Rare earth elements in “Younger” granites, Northern Portugal. Lithos 11:219–229

    Google Scholar 

  • Alderton DHM, Pearce JA, Potts PJ (1980) Rare earth element mobility during granite alteration: evidence from Southwest England. Earth Planet Sci Lett 49:149–165

    Google Scholar 

  • Allegre CJ (1972) Géochronologie isotopique et développement de la crôute terrestre au cours des temps géologiques. In: “Structure et dynamique de la lithosphére”, Paris, Herman

    Google Scholar 

  • Allegre CJ, Treuil M, Minster JF, Minster B, Albarede F (1977) Systematic use of trace elements in igneous processes. Part 1: Fractional crystallization processes in volcanic suites. Contrib Mineral Petrol 60:57–75

    Google Scholar 

  • Allegre CJ, Ben Othman D (1980) Nd-Sr isotopic relationship in granitoid rocks and continental crust development: a chemical approach to orogenesis. Nature 286:335–342

    Google Scholar 

  • Armstrong RL (1968) A model for the evolution of strontium and lead isotopes in a dynamic earth. Rev Geophys 6:175–199

    Google Scholar 

  • Arth JG (1976) Behavior of trace elements during magmatic processes. A summary of theoretical models and their applications. J Res USGS, 4(1):41–47

    Google Scholar 

  • Arth JG, Barker F (1976) Rare earth partitioning between hornblende and dacitic liquid and implications for the genesis of trondhjemitictonalitic magmas. Geology 4:534–536

    Google Scholar 

  • Autran A, Fonteilles M, Guitard G (1970) Relation entre les intrusions de granitoïdes, l'anatexie et le métamorphisme régional considérés principalement du point de vue du rôle de l'eau: cas de la chaîne Hercynienne des Pyrénées Orientales. Bull Soc Géol Fr 7 (XII):673–731

    Google Scholar 

  • Bartlett RW (1969) Magma convection, temperature distribution and differentiation. Am J Sci 267:1067–1082

    Google Scholar 

  • Bateman PC, Chappel BW (1979) Crystallization, fractionation and solidification of the Tuolumne intrusive series, Yosemite National Park, California. Geol Soc Am Bull 1 (90):465–482

    Google Scholar 

  • Bowen NL (1928) The evolution of igneous rocks. Princeton, New Jersey

    Google Scholar 

  • Chayla B, Jaffrezic H, Joron JL (1973) Analyse par activation dans les neutrons épithermiques. Application á la détermination d'éléments en traces dans les roches. CR Acad Sci Paris, 277, ser D:273–275

    Google Scholar 

  • Cocherie A (1977) Données préliminaires sur la géochimie des terres rares dans le massif leucogranitique du Manaslu (Népal central). Int Coll CNRS 268, Paris:93–110

    Google Scholar 

  • Coryell CD, Chase JW, Winchester JW (1963) A procedure for geochemical interpretation of terrestrial rare earth abundance patterns. J Geophys Res 68:559–566

    Google Scholar 

  • Didier J (1973) Granites and their enclaves. Dev. in Petrology. Amsterdam, Elsevier

    Google Scholar 

  • Didier J, Lameyre J (1969) Les granites du Massif Central français: Etude comparée des leucogranites et granodiorites. Contrib Mineral Petrol 24:219–228

    Google Scholar 

  • Dudas MJ, Schmitt RA, Harward ME (1971) Trace element partitioning between volcanic plagioclase and dacitic pyroclastic matrix. Earth Planet Sci Lett 11:440–446

    Google Scholar 

  • Emmermann R, Daieva L, Schneider J (1975) Petrologic significance of rare earths in granites. Contrib Mineral Petrol 52:267–283

    Google Scholar 

  • Ewart A, Hildreth W, Carmichael ISE (1975) Quaternary acid magma in New Zealand. Contrib Mineral Petrol 51:1–27

    Google Scholar 

  • Flynn RT, Burnham CW (1978) An experimental determination of rare earth partition coefficients between a chloride containing vapor phase and silicate melts. Geochim Cosmochim Acta 42:685–701

    Google Scholar 

  • Fourcade S, Hamet J, Allegre CJ (1977) Données de la méthode rubidium-strontium et détermination des terres rares dans le leucogranite du Manaslu: implications pour l'orogénése himalayenne. CR Acad Sci Paris, 284, ser D:717–720

    Google Scholar 

  • Fudali RF (1965) Oxygen fugacities and andesitic magmas. Geochim Cosmochim Acta 29:1063–1075

    Google Scholar 

  • Gromet P (1979) Rare earths abundances and fractionation and their implication for batholithic petrogenesis in Peninsular Ranges Batholith, California, USA, and Baja California, Mexico. Ph D Thesis, Caltech

  • Gulson BL. Krogh TE (1973) Old lead component in the young Bergell massif, South East Swiss Alps Contrib Mineral Petrol 40:239–252

    Google Scholar 

  • Hamet J, Allegre CJ (1976) Hercynian orogeny in the Montagne Noire (France): Application of 87Rb/87Sr systematics. Geol Soc Am Bull 87:1429–1442

    Google Scholar 

  • Hanson GN (1978) The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet Sci Lett 38:26–43

    Google Scholar 

  • Hart SR, Allegre CJ (1979) Trace elements constraints on magma genesis. In “Physics of magmatic processes”, Bowen Vol, Princeton Univ

    Google Scholar 

  • Haskin LA, Haskin MA (1966) Rare earth in European shales: A redetermination. Science 154:507–509

    Google Scholar 

  • Haskin LA, Frey FA, Schmitt RA, Schmitt RH (1968) Meteroritic, solar and terrestrial rare earth distribution. In: Ahrens (ed) “Physics and chemistry of the earth“ Vol VII, pp 169–321

  • Haskin LA, Paster TP (1979) Chemistry and mineralogy of the rare earths. In: Gschneider and Eyring (eds) “Handbook of the physics and chemistry of the rare earths”, Ch 21

  • Hellman PL, Green TH (1979) The role of sphene as an accessory phase in the high-pressure partial melting of hydrous mafic compositions. Earth Planet Sci Lett 42:191–201

    Google Scholar 

  • Herrmann AG (1970) Yttrium and lanthanides. In: Wedepohl (ed) “Handbook of geochemistry”, Springer Verlag, 39:57–71

  • Hurley PMH, Hughes G, Faure HW, Fairbairn WH, Pinson WH (1962) Radiogenic 87Sr model of continent formation. J Geophys Res 67:5315–5334

    Google Scholar 

  • Hutton CO (1950) Studies of heavy detrital minerals. Geol Soc Am Bull 61:635

    Google Scholar 

  • Irving AJ (1978) A review of experimental studies of crystal liquid trace element partitioning. Geochim Cosmochim Acta 42, n∘6A: 743–770

    Google Scholar 

  • Koljonen T, Rosenberg RJ (1974) Rare earth elements in granitic rocks. Lithos 7:249–261

    Google Scholar 

  • Leterrier J (1972) Etude pétrographique et géochimique du massif granitique de Quérigut (Ariége). Thése Sci Nancy, Fr, Sci Terre Mem 23

  • Leterrier J, Debon F (1978) Caractères géochimiques comparés des granitoïdes et de leurs enclaves microgrenues. Implications génétiques. Bull Soc Géol Fr, ser 7, 20:3–10

    Google Scholar 

  • Mac Carthy TS, Kable EJD (1978) On the behavior of rare earth elements during partial melting of granitic rocks. Chem Geol 22:21–29

    Google Scholar 

  • Marre J (1973) Le complexe éruptif de Quérigut: pétrologie, structurologie, cinématique de mise en place. Thése, Univ Toulouse, Fr

    Google Scholar 

  • Masuda A (1962) Regularities in variation of relative abundances of lanthanides elements and an attempt to analyse separation index patterns of some minerals. J Earth Sci Nagoya Univ 10:173–187

    Google Scholar 

  • Masuda A (1968) Geochemistry of lanthanides in basalts of central Japan. Earth Planet Sci Lett 4:284–292

    Google Scholar 

  • Michard-Vitrac A, Albarede F, Dupuis C, Taylor HP Jr (1980) The genesis of Variscan (Hercynian) plutonic rocks: inferences from Sr, Pb, and O studies on the Maladetta igneous complex, Central Pyrénées (Spain). Contrib Mineral Petrol 72 (1):57–72

    Google Scholar 

  • Moorbath S (1975) Evolution of Precambrian crust from strontium evidence. Nature 254:395–397

    Google Scholar 

  • Nagasawa H (1970) Rare earth concentrations in zircons and apatites and their host dacites and granites. Earth Planet Sci Lett 9:359–364

    Google Scholar 

  • Nagasawa H, Schnetzler CC (1971) Partitioning of rare earth, alkaline and alkaline-earth elements between phenocrists and acidic igneous magma. Geochim Cosmochim Acta 35:953–968

    Google Scholar 

  • Nance WB, Taylor SR (1976) Rare earth element patterns and crustal evolution. I. Australian post-Archean sedimentary rocks. Geochim Cosmochim Acta 40:1539–1551

    Google Scholar 

  • O'Nions RK, Evensen NM, Hamilton PJ (1979) Geochemical modeling of mantle differentiation and crustal growth. J Geophys Res 84:6091–6101

    Google Scholar 

  • Orville PM (1962) Alkali metasomatism and feldspars. Nor Geol Tidsskr 42:283–316

    Google Scholar 

  • Osborn EF (1962) Reaction series for subalkaline igneous rocks based on different oxygen pressure conditions. Am Mineral 47:211–226

    Google Scholar 

  • Patterson C, Tatsumoto M (1964) The significance of Lead isotopes in detrital feldspar with respect to chemical differentiation within the arth's mantle. Geochim Cosmochim Acta 28:1–22

    Google Scholar 

  • Perrin R, Roubault M (1939) Le granite et les réactions à l'état solide. Carte Géol Algérie Bull, 5ème sér, 4:1–168

    Google Scholar 

  • Piwinskii AJ (1968) Experimental studies of igneous rock series, Central Sierra Nevada batholith, California. J Geol 76:548–570

    Google Scholar 

  • Presnall DC, Bateman PC (1973) Fusion relations in the system NaAlSi3O8-CaAl2Si2O8-KAlSi3O8-H2O and generation of granitic magmas in the Sierra Nevada batholith. Geol Soc Am Bull 84:3181–3202

    Google Scholar 

  • Prince AT (1943) The system Albite-Anorthite-Sphene. J Geol 51:1–16

    Google Scholar 

  • Raguin E (1977) Le massif de l'Aston dans les Pyrénées de l'Ariège. Bull BRGM, Sect 1 (2):89–119

    Google Scholar 

  • Ramberg H (1944) The thermodynamics of the earth's crust. 1. Preliminary survey of principal forces and reactions in the earth's crust. Nor Geol Tidsskr 24:98–111

    Google Scholar 

  • Schilling JG, Winchester JW (1967) Rare earth fractionation and magmatic processes. In: Runcorn (ed) “Mantle of the earth and terrestrial planets” Interscience, New-York, pp 267–283

    Google Scholar 

  • Schnetzler CC, Philpotts JA (1970) Partition coefficients of rare earth elements between igneous matrix and rock forming phenocrists, II. Geochim Cosmochim Acta 34:331–340

    Google Scholar 

  • Shaw HR (1965) Comments on viscosity, crystal settling and convection in granitic magmas. Am J Sci 263:120–152

    Google Scholar 

  • Shaw DM (1977) Trace element behavior during anatexis. In: Dick (ed) “Magma genesis”, Proc Am Geophys Un, Bull 96:189–213

  • Shimizu N, Semet MP, Allegre CJ (1978) Geochemical applications of quantitative ion-microprobe analysis. Geochim Cosmochim Acta 42:1321–1334

    Google Scholar 

  • Skala W (1979) Some effects of the constant sum problem in geo-chemistry. Chem Geol 27:1–9

    Google Scholar 

  • Smith WL, Franck ML, Sherwood AN (1957) Uranium and Thorium in the accesory Allanite of igneous rocks. Am Mineral 42: 367

    Google Scholar 

  • Taylor SR (1969) Trace element geochemistry of Andesites and associated calc-alkaline rocks. Proc Andesite Conf, Oregon, Dept Geol Mineral, Publ 65

    Google Scholar 

  • Taylor SR (1979) Chemical composition and evolution of the continental crust. In: Mc Elhinny (ed) “The earth, its origin, structure and evolution”, Academic, New-York

    Google Scholar 

  • Taylor RP, Fryer BJ (1980) Multiple-stage hydrothermal alteration in porphyry copper systems in northern Turkey: the temporal interplay of potassic, propylitic and phyllic fluids. Can J Earth Sci 17:901–926

    Google Scholar 

  • Treuil M, Jaffrezic H, Deschamps N, Derre C, Guichard F, Joron JL, Pelletier B, Novotny S, Courtois C (1973) Analyse des lanthanides, Hf, Cr, Mn, Co, Cu, Zn dans les minéraux et les roches par activation neutronique. J Radioanal Chem 18:55–68

    Google Scholar 

  • Treuil M, Varet J (1973) Critères volcanologiques, pétrologiques et géochimiques de la génèse et de la differenciation des magmas basaltiques: Exemple de l'Afar. Bull Soc Géol Fr 7 (XV): 506–540

    Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol Soc Am Bull 74:1–153

    Google Scholar 

  • Vitrac-Michard A, Allegre CJ (1975) A study of the formation and history of a piece of continental crust by the 87Rb/87Sr method: The case of the french oriental Pyrénées. Contrib Mineral Petrol 50:257–285

    Google Scholar 

  • Walton M (1960) Granite problems. Science 131:635–645

    Google Scholar 

  • Watson B (1979) Zircon saturation in felsic liquids: Experimental results and application to trace element geochemistry. Contrib Mineral Petrol 70:407–419

    Google Scholar 

  • Webster EA, Holloway JR (1980) The partitioning of REE's, Sc, Rb and Cs between a silicic melt and a Cl fluid. Eos 61 (46): 1152

    Google Scholar 

  • Wendland RF, Harrison WJ (1979) Rare earth partitioning between carbonate and silicate liquid and CO2 vapor: results and implication for the formation of light rare earth-enriched rocks. Contrib Mineral Petrol 69:409–419

    Google Scholar 

  • White AJR, Chappel BW (1977) Ultrametamorphism and granitoid genesis. Tectonophysics 43:7–22

    Google Scholar 

  • Winkler HGF (1965) Petrogenesis of metamorphic rocks. Springer Verlag, Berlin

    Google Scholar 

  • Wyllie PJ (1977) Crustal anatexis: an experimental revew. Tectono-physics 43:41–71

    Google Scholar 

  • Zielinski RA, Lipman PW (1976) Trace element variations at Summer Coon Volcano, San Juan Mountains, Colorado, and the origin of continental interior andesite. Geol Soc Am Bull 87:1477–1485

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fourcade, S., Allegre, C.J. Trace elements behavior in granite genesis: A case study The calc-alkaline plutonic association from the Querigut complex (Pyrénées, France). Contr. Mineral. and Petrol. 76, 177–195 (1981). https://doi.org/10.1007/BF00371958

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371958

Keywords

Navigation