Skip to main content
Log in

Non-linear analysis of wave propagation using transform methods

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Non-linear wave propagation/transient dynamics in lattice structures is modeled using a technique which combines the Laplace transform and the Finite element method. The first step in the technique is to apply the Laplace transform to the governing differential equations and boundary conditions of the structural model. The non-linear terms present in these equations are represented in the transform domain by making use of the complex convolution theorem. Then, a weak formulation of the transformed equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solutions of the linear parts of the transformed governing differential equations. Numerical results are presented for a viscoelastic rod and von Karman type beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aral, M. M.; Gülcat, Ü. (1977): A finite element Laplace transform solution technique for the wave equation. Int. J. Numer. Meth. Eng. 11, 1719–1732.

    Google Scholar 

  • Bellman, R.; Kalaba, R. E.; Lockett, J. A. (1966): Numerical inversion of Laplace transform. New York; American Elsevier

    Google Scholar 

  • Beskos, D. E.; Narayanan, G. V. (1983): Dynamic response of frameworks by numerical Laplace transform. Comp. Meth. Appl. Mech. Eng. 37, 289–307.

    Google Scholar 

  • Cella, A.; Lucchesi, M.; Pasquinelli, G. (1980): Space time elements for shock wave propagation problems. Int. J. Number. Meth. Eng. 15, 1475–1488

    Google Scholar 

  • Crump, K. S. (1976): Numerical inversion of Laplace transforms using a Fourier series approximation. J. Assoc. Comp. Mech. 23, 89–95

    Google Scholar 

  • Engelbrecht, J. (1979): One-dimensional deformation waves in non-linear viscoelastic media. Wave. Motion 1, 65–74

    Google Scholar 

  • Flowtow, A. H. von, (1984): Disturbance propagation in structural networks; control of large space structures. PhD thesis, Stanford University

  • Hilmer, P.; Schmid, G. (1988): Calculation of foundation uplift effects using a numerical Laplace transform. Earthquake Eng. Struct. Dynamics 16, 789–801

    Google Scholar 

  • Jeffery, A.: Engelbrecht, J. (1980): Non-linear dispersive waves in a relaxing medium. Wave Motion 2, 255–266

    Google Scholar 

  • Karmakar, S. B. (1980): Approximete analysis of non-linear systems by Laplace transform. J. Sound and Vibration 69, 597–602

    Google Scholar 

  • Kirksey, J. F. (1988): Improvement of harmonic balance solution routines for non-linear systems. Masters thesis, Georgia Institute of Technology

  • Kondoh, K.; Atluri, S. N. (1985): A simplified finite element method for large deformation, post-buckling analyses of large frame structures, using explicitly derived tangent stiffness matrices. Int. J. Numer. Meth. Eng. 23, 69–90

    Google Scholar 

  • Narayanan, G. V.; Beskos, D. E. (1982): Numerical operational methods for time-dependent linear problems. Int. J. Numer. Meth. Eng. 18, 1829–1854

    Google Scholar 

  • Nayfeh, A. H.; Mook, D. T. (1979): Non-linear oscillations. New York: Wiley and Sons

    Google Scholar 

  • Nickell, R. E. (1973): Non-linear dynamics by mode superposition. AIAA Technical Rpt. No. 74-341

  • Novikov, I. A. (1984): Change of variables in the Laplace transform and some applications. Inzhenerno-Fizicheskii Zhurnal 47, 475–482

    Google Scholar 

  • Oden, J. t.; Wellford, L. C. (1975): Discontinuous finite element approximations for the analysis of shock waves in non-linearly elastic materials. J. Computational Physics 19, 179–210

    Google Scholar 

  • Pipkins, D. S. (1992): Non-linear analysis of (i) wave propagation using transform methods and (ii) plates and shells using integral equations. PhD thesis, Georgia Institute of Technology

  • Sato, H.; Asada, K. (1988): Laplace transform transient analysis of a non-linear system. J. Sound and Vibration 121, 473–479

    Google Scholar 

  • Smith, M. G. (1966): Laplace transform theory. New York: Van Nostrand

    Google Scholar 

  • Sneddon, I. H. (1972): The use of integral transforms. New York: McGraw-Hill

    Google Scholar 

  • Weaver, W.; Gere, J. M. (1980): Matrix analysis of framed structures. New York: Van Nostrand

    Google Scholar 

  • Weber, E. (1956): Complex convolution applied to non-linear problems. In: Proceedings of the symposium on non-linear circuit analysis, vol. 6, pp. 409–427. Brooklyn: Polytechnic Institute of Brooklyn Press

    Google Scholar 

  • Wolf, J. P. (1988): Soil-structure interaction analysis in the time domain. Englewood Cliffs, New Jersey: Prentice-Hall

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. E. Beskos, August 13, 1992

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pipkins, D.S., Atluri, S.N. Non-linear analysis of wave propagation using transform methods. Computational Mechanics 11, 207–227 (1993). https://doi.org/10.1007/BF00371863

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371863

Keywords

Navigation