Skip to main content
Log in

Fluids at crustal pressures and temperatures

I. Pure species

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The pressure-volume-temperature data of several gases (H2, O2, CO, CH4, N2 and CO2) have been used to obtain the following corresponding states equation (P>1 kbar; T>400 K): Z(±0.0878)=A+BP r +CP /2 r (21) where Z is the compressibility factor, P r reduced pressure (P/critical P), T r reduced temperature (T/critical T) and the coefficients are given by: A=1−0.5917 T /−2 r B=0.09122 T /−1 r C=1.4164×10−4 T /−2 r −2.8349×10−6 ln T r (P>1 kbar; T>400 K). At pressures below 1 kbar, Z is given by: Z(±0.0761)=1+BP r +CP /2 r (23) where B=0.09827 T /−1 r −0.2709 T /−3 r C=0.01472 T /−4 r −0.00103 T /−1.5 r . For water (P>1 kbar; T>400 K): Z(±0.0209)=A+BP+CP 2 (22) where A=−0.7025+1.16×10−3 T+99.6799 T −1 B=0.2143 T −1−3.1423×10−14 T 3 C=−2.249×10−6 T −1−0.1459 T −3+2.1690×10−15 T 2. At pressure below 1 kbar, the equation is (P>100 bar; T >673 K): Z(±0.0601)=1+B′/V+C′/V 2 (24) where B′=−2.20960 T0.5+3.35460×10−8 T3 C′=3.4569×10−5T2.5+64.9764 ln T Fugacities of the gases may be obtained by integrating the Z equations separately and combining the results as follows:

$$\int\limits_1^P {VdP = RT} {\text{ }}\left( {\int\limits_1^{1000} {Z_{23} /PdP + } \int\limits_{1000}^1 {Z_{21} /PdP} } \right)$$
((26))

The subscript in Z denotes the equation which is to be used for calculating Z.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender E (1970) Equations of state exactly representing the phase

  • behavior of pure substances. Am Soc Mech Engineers, Symposium Thermophys Properties, 5th, Proc 227–235

  • Bottinga, Y, Richet P (1981) High pressure and temperature equation of state and calculation of the thermodynamic properties of gaseous carbon dioxide. Am J Sci 281:615–660

    Google Scholar 

  • Burnham CW, Holloway JR, Davis NE (1969) The specific volume of water in the range 10–8,900 bars, 20° to 900° C. Am J Sci 267 A:70–95

    Google Scholar 

  • Delany JM, Helgeson HC (1978) Calculation of the thermodynamic consequences of dehydration in subducting oceanic crust to 100 kb and >800 C. Am J Sci 278:638–686

    Google Scholar 

  • De Santis R, Breedveld GJF, Prausnitz JM (1974) Thermodynamic properties of aqueous gas mixtures at advanced pressures. Ind Eng Chem Proc Dev 13:374–377

    Google Scholar 

  • Eugster HP (1981) Metamorphic solutions and reactions. In: Wickman FE, Rickard DT (eds) Chemistry and Geochemistry of Solutions at High Temperatures and Pressures. Pergamon Press, New York. Phys Chem Earth 13/14, 461–507

    Google Scholar 

  • Eugster HP (1986) Minerals in hot water. Am Mineral 71:655–673

    Google Scholar 

  • Ganguly J (1977) Compositional variables and chemical equilibrium in metamorphism. In: Saxena SK, Bhattacharji S (eds) Energetics of geological processes. Springer, Berlin Heidelberg New York, pp 230–284

    Google Scholar 

  • Greenwood HJ (1973) Thermodynamic properties of gaseous mixtures of H2O and CO2 between 450 and 800° C and 0 to 500 bars. Am J Sci 273:561–571

    Google Scholar 

  • Greenwood HJ (1975) Buffering of pore fluids by metamorphic reactions. Am J Sci 275:573–593

    Google Scholar 

  • Halbach H, Chatterjee ND (1982) An empirical Redlich-Kwongtype equation of state for water to 1,000° C and 200 kbar. Contrib Mineral Petrol 79:337–345

    Google Scholar 

  • Helgeson HC (1981) Prediction of the thermodynamic properties of electrolytes at high pressures and temperatures. In: Rickard D, Wickman F (eds) Chemistry and geochemistry of solutions at high temperatures and pressures. Pergamon Press, New York. Phys Chem Earth 13/14:133–177

    Google Scholar 

  • Hilbert R (1979) PVT-Daten von Wasser und von wässrigen Natriumchlorid-Lösungen bis 873 K, 4,000 Bar und 25 Gewichtsprozent NaCl. Hochschulverlag, Freiburg, S 212

    Google Scholar 

  • Holloway JR (1977) Fugacity and activity of molecular species in supercritical fluids. In: Fraser DG (ed) Thermodynamics in geology. Reidel, Dordrecht-Holland, pp 161–181

    Google Scholar 

  • Jacobs GK, Kerrick DM (1981) Methane: an equation of state with application to the ternary system H2O-CO2-CH4. Geochim Cosmochim Acta 45:607–614

    Google Scholar 

  • Jüza J, Kmonicek V, Sifner O (1965) Measurements of the specific volume of CO2 at 700–4,000 bars and 50–475° C. Physica 31:1735–1744

    Google Scholar 

  • Kennedy GC, Holser W (1966) Pressure-volume-temperature and phase relations of water and carbon dioxide. Geol Soc Mem 97:374–383

    Google Scholar 

  • Kerrick DM, Jacobs GK (1981) A modified Redlich-Kwong equation for H2O, CO2, and H2O-CO2 mixtures at elevated pressures and temperatures. Am J Sci 281:735–767

    Google Scholar 

  • Khodakovsky IL, Dorofeyeva VA, Melenikova GL, Geranin AV, Ry'zhenko BN (1981) Thermodynamic parameters of liquid water at 0–300° C and pressures upto 10,000 bar. Geokhimiya 2:208–220

    Google Scholar 

  • Mel'nik YP (1972) Thermodynamic parameters of compressed gases and metamorphic reactions involving water and carbon dioxide. Geokhimiya 6:654–662

    Google Scholar 

  • Mel'nik YP (1978) Thermodynamic properties of carbon monoxide and methane at high temperatures and pressures — a new correlation based on the principle of corresponding states. Geokhimiya 11:1677–1691

    Google Scholar 

  • Michels A, Michels C, Wouters H (1935) Isotherms of CO2 between 70 and 300 atm (amagat densities 250–600). R Soc London Proc A 153:214–224

    Google Scholar 

  • Rice MH, Walsh JM (1957) Equation of state of water to 250 kilobars. J Chem Phys 26:824–830

    Google Scholar 

  • Robertson SL, Babb SE Jr (1970) Isotherms of carbon monoxide to 10 kbar and 300°C. J Chem Phys 53:1094–1097

    Google Scholar 

  • Ross M, Ree FH (1980) Repulsive forces of simple molecules and mixtures at high density and temperature. J Chem Phys 73:6146–6152

    Google Scholar 

  • Ryzhenko BN, Volkov VP (1971) Fugacity coefficients of some gases in a broad range of temperatures and pressures. Geokhimiya 7:760–773

    Google Scholar 

  • Ryzhenko BN, Malinin SD (1971) The fugacity rule for the systems CO2-CH4, CO2-N2, and CO2-H2. Geokhimiya 8:899–913

    Google Scholar 

  • Schmidt E (1979) Properties of water and steam in Si-units. Springer, Berlin Heidelberg New York, p 190

    Google Scholar 

  • Shmonov VM, Shmulovich KI (1974) Molal volumes and equations of state of CO2 at temperatures from 100 to 1,000° C and pressures from 2,000 to 10,000 bars. Akad Nauk SSSR Doklady 217:205–209

    Google Scholar 

  • SPSS (1985) Statistical package for the social sciences. McGrawHill, NY

    Google Scholar 

  • Tanishita I, Watanabe K, Kijima J, Ishii H, Oguchi K, Uematsu M (1976) Experimental study of the p, V, T properties of water in the range 323.15 to 773.15 K and pressures upto 200 MPa. J Chem Thermodyn 8:1–20

    Google Scholar 

  • Tourét J, Bottinga Y (1979) Equation d'etat pour le CO2; application aux inclusions carboniques. Bull Mineral 102:577–583

    Google Scholar 

  • Tsiklis DS, Linshits LR, Tsimmerman SA (1971) Measurement and calculation of molar volume of CO2 at high pressure and temperature. Teplofiz Svoistva Veshchestv Mater 3:130–136

    Google Scholar 

  • Vukalovich MP, Altunin VV, Timoshenko NI (1963) Specific volume of CO2 at high pressure abd temperature. Teploenergetika 10:92–93

    Google Scholar 

  • Walther JV, Wood BJ (1986) (eds), Fluid-rock interactions during metamorphism. (Adv Phys Geochem, vol 5), Springer, Berlin Heidelberg New York, p 211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, S.K., Fei, Y. Fluids at crustal pressures and temperatures. Contr. Mineral. and Petrol. 95, 370–375 (1987). https://doi.org/10.1007/BF00371850

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371850

Keywords

Navigation