Skip to main content
Log in

On recasting analyses of garnet into end-member molecules

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Most published analyses of garnet deviate from structural ideality. Consequently, compositions expressed as molecular percentages of end-member molecules may differ if different re-calculation sequences have been used. A suitable standard calculation procedure is presented, and is demonstrated to be satisfactory by its application to 69 published analyses of garnets both common and rare.

It is seldom necessary to use molecules other than pyrope, almandine, spessartine, grossular, andradite, uvarovite and hydrogrossular, and most analyses can be recast into four or less molecules which exceed 3% of the garnet. This means that most analyses can be visually displayed in a composition tetrahedron.

It is suggested, that the percentage number of cations which can be allocated to garnet molecules is a figure useful for assessment of analytical quality. More than 95% of the cations can be so allocated in the majority of the analyses considered.

Full details of the proposed scheme are appended together with a worked example which demonstrates the abbreviated procedure which applies to most common garnets. A compilation is given of the common physical properties which have been measured for synthetic end-member garnets of the types used in the calculation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berry, L. G.: X-ray powder diffraction file card 9-427. Philadelphia: Am. Soc. Testing Materials, revised June 1967.

    Google Scholar 

  • Boyd, F. R., and J. L. England: Pyrope. Rep. Dir. geophys. Lab. Carnegie Instn., 83–87 (1958/59).

  • Brandenberger, E.: Kristallstrukturelle Untersuchungen an Ca-Aluminathydraten. Schweiz. mineral. petrogr. Mitt. 13, 569–570 (1933).

    Google Scholar 

  • Coes Jr., L.: High pressure minerals. J. Am. Ceram. Soc. 38, 298 (1955).

    Google Scholar 

  • Cohen-Addad, C., P. Ducros, A. Durif, E. F. Bertaut et A. Delapalme: Détermination de la position des atomes d'hydrogène dans l'hydrogrenat Al2O3·3CaO·6H2O, par résonance magnétique nucléaire et diffraction neutronique. J. phys. radium 25, 478–483 (1964).

    Google Scholar 

  • Dana, E. S.: Descriptive mineralogy, 6th ed. New York: John Wiley & Sons 1903.

    Google Scholar 

  • Deer, W. A., R. A. Howie, and J. Zussman: Rockforming minerals, vol. 1, Ortho- and ring silicates. London: Longmans, Green & Co. Ltd. 1962.

    Google Scholar 

  • Eiger, A.: Rev. matéraux construct. et trav. publ. 33, 141–142 (1937).

    Google Scholar 

  • Espinosa, G. P.: A crystal chemical study of titanium and chromium substituted yttrium iron and gallium garnets. Inorg. Chem. 3, 848 (1964).

    Google Scholar 

  • Fermor, L. L.: On the composition of some Indian garnets. Records Geol. Survey India 59, pt. 2, 191–207 (1926).

    Google Scholar 

  • —: On khoharite, a new garnet and on the nomenclature of garnets. Records Geol. Survey India 73, pt. 1, 145–156 (1938).

    Google Scholar 

  • —: On a new chrome-garnet. Geol. Mag. 89, 145–147 (1952).

    Google Scholar 

  • Flint, E. P., H. F. McMurdie, and L. S. Wells: Hydrothermal and X-ray studies of the garnet — hydrogarnet series and the relationship of the series to hydration products of Portland cement. J. Research Natn. Bur. Standards 26, 13–33 (1941);-Res. Pap. U.S. Natn. Bur. Standards RP 1355 (1941).

    Google Scholar 

  • Foreman: See McConnell 1966.

    Google Scholar 

  • Fujii, T.: Correlation of some physical properties and chemical composition of solid solution Am. Mineralogist 45, 370–382 (1960).

    Google Scholar 

  • Geller, S.: Magnetic interactions and distribution of ions in the garnets. J. Appl. Phys. 31, 30S-37S (1960).

    Google Scholar 

  • —, and C. E. Miller: The synthesis of uvarovite. Am. Mineralogist 44, 445–446 (1959a).

    Google Scholar 

  • —: Substitution of Fe3+ for Al3+ in synthetic spessartite. Am. Mineralogist 44, 665–667 (1959b).

    Google Scholar 

  • —: Silicate garnet — yttrium iron garnet solid solutions. Am. Mineralogist 44, 1115–1120 (1959c).

    Google Scholar 

  • —, and R. G. Treuting: New synthetic garnets. Acta Cryst. 13, 179–186 (1960).

    Google Scholar 

  • Gentile, A. L., and R. Roy: Isomorphism and crystalline solubility in the garnet family. Am. Mineralogist 45, 701–711 (1960).

    Google Scholar 

  • Gilleo, M. A., and S. Geller: Magnetic and cristallographic properties of substituted yttrium-iron garnet, 3Y2O3·xM2O3·(5−x)Fe2O3. Phys. Rev. 110, 73–78 (1958).

    Google Scholar 

  • Gorgeu, A.: Sur la production artificielle de la spessartine ou grenat magnanesifère. Compt. rend. 97, 1303 (1883). [Abstract-Econ. Geol. 32, 645 (1937)].

    Google Scholar 

  • Imperial Chemical Industries, Northwich, England. X-ray powder diffraction file card 2-1124. Philadelphia: Am. Soc. for Testing and Materials 1950.

    Google Scholar 

  • Ito, J., and C. Frondel: Synthetic zirconium and titanium garnets. Am. Mineralogist 52, 773–781 (1967).

    Google Scholar 

  • Keith, M. L., and R. Roy: Structural relations among double oxides of trivalent elements. Am. Mineralogist 39, 1–23 (1954).

    Google Scholar 

  • Klimenko, Z. G., and V. A. Tikhonov: Synthesis and study of manganese hydrated garnets. Eksperiment v. Tekhn. Mineralog. i Petrogr., po Materialam Soveshch., 7th Lvov 1964, 64–69 (1966) [Chem. Abstr. 65-11732a].

  • Lung, T. Y.: Hydrougrandite, a new variety of hydrogarnet from Hsiaosungshan. Ti Chich Hsüeh Pao 44, 219 (1964). [Abstracts — Bull. soc. franç. minéral. et crist. 88, 359 (1965) and Am. Mineralogist 50, 2100 (1965)].

    Google Scholar 

  • Matthes, S.: Ergebnisse zur Granatsynthese und ihre Beziehungen zur natürlichen Granatbildung innerhalb der Pyralspit-Gruppe. Geochim. et Cosmochim. Acta 23, 233–294 (1961).

    Google Scholar 

  • McConnell, D.: Refringence of garnets and hydrogarnets. Can. Mineralogist 8, 11–21 (1964).

    Google Scholar 

  • —: Propriétés physiques des grenats. Calcul de la dimension de la maille unité à partir de la composition chimique. Bull. Soc. franç. minéral. et crist. 89, 14–17 (1966).

    Google Scholar 

  • —: Crystal chemical calculations. Geochim. et Cosmochim. Acta 31, 1479–1487 (1967).

    Google Scholar 

  • Menzer, G.: Die Kristallstruktur der Granate. Z. Krist. 69, 300–396 (1928).

    Google Scholar 

  • Milton, C., B. L. Ingram, and L. V. Blade: Kimzeyite, a zirconium garnet from Magnet Cove, Arkansas. Am. Mineralogist 46, 533–548 (1961).

    Google Scholar 

  • Moench, R. H., and R. Meyrowitz: Goldmanite, a vanadium garnet from Laguna, New Mexico. Am. Mineralogist 49, 644–655 (1964).

    Google Scholar 

  • Naka, S., O. Takenaka, T. Sekiya, and T. Noda: Effect of pressure on the formation of compounds in the system Y2O3-Al2O3. Kogyo Kagaku Zasshi 69, (6), 1112–1116 (1966). (Chem. Abstr. 66-99206u).

    Google Scholar 

  • National Bureau of Standards: Natn. Bur. Standards (U.S.), Monogr. 25 Sect. 4 (1965).

  • Nixon, P. H., O. Von Knorring, and J. M. Rooke: Kimberlites and associated inclusions of Basutoland: a mineralogical and geochemical study. Am. Mineralogist 48, 1090–1132 (1963).

    Google Scholar 

  • Piddington, H.: J. Asiatic Soc. Bengal 19, 145 (1851).

    Google Scholar 

  • Rickwood, P. C.: On the quality of representative mineral concentrates. Geochim. et Cosmochim. Acta 30, 545–551 (1966).

    Google Scholar 

  • Roy, D. M., and R. Roy: System CaO-Al2O3-SiO2-H2O. VI. The grossularite — 3 CaO·Al2O3·6H2O join. Bull. Geol. Soc. Am. 68, 1788 (1957).

    Google Scholar 

  • Sastri, G. G. K.: Note on a chrome and two manganese garnets from India. Mineral. Mag. 33, 508–511 (1963).

    Google Scholar 

  • Schwarz, H.: Neue Verbindungen mit Granatstruktur. II. Hydrogranate. Z. Naturforsch. 22b, 554–556 (1967).

    Google Scholar 

  • Skinner, B. J.: Physical properties of end-members of the garnet group. Am. Mineralogist 41, 428–436 (1956).

    Google Scholar 

  • Snow, R. B.: Equilibrium relationships on the liquidus surface in part of the MnO-Al2O3-SiO2 system. J. Am. Ceram. Soc. 26, 11–20 (1943).

    Google Scholar 

  • Strens, R. G. J.: Synthesis and properties of calcium vanadium garnet (Goldmanite). Am. Mineralogist 50, 260 (1965).

    Google Scholar 

  • Swanson, H. E. et al.: Standard X-ray diffraction powder patterns. Circ. U.S. natn. Bur. Stand. 539, 9, 22–23 (1959).

    Google Scholar 

  • —, M. I. Cook, E. H. Evans, and J. H. De Groot: Standard X-ray diffraction powder patterns. Circ. U.S. Natl. Bur. Stand. 539, 10, 17 (1960).

    Google Scholar 

  • Tarte, P.: Infrared spectra of garnets. Nature 186, 234 (1960a).

    Google Scholar 

  • —: Recherches sur la spectre infrarouge des silicates II — Détermination du rôle structural du titane dans certains silicates. Silicates inds. 25, 171–175 (1960b).

    Google Scholar 

  • Thorvaldson, T., N. S. Grace, and V. A. Vigfusson: The hydration of the aluminates of calcium. II. The hydration production of tricalcium aluminate. Can. J. Research 1, 201–213 (1929).

    Google Scholar 

  • Vermaas, F. H. S.: Manganese-iron garnet from Otjosondu, South West Africa. Mineral. Mag. 29, 946–951 (1952).

    Google Scholar 

  • Weiss, R., and D. Grandjean: Structure de l'aluminate tricalcique hydraté, 3 CaO·Al2O3·6 H2O. Acta cryst. 17, 1329–1330 (1964).

    Google Scholar 

  • Yoder, H. S.: Garnets and staurolite. Rep. Dir. geophys. Lab. Carnegie Instn. No. 53, 120–121 (1953/54).

  • —, and M. L. Keith: Complete subsitution of aluminium for silicon: the system 3 MnO·Al2O3·3 SiO2-3 Y2O3·5 Al2O3. Am. Mineralogist 36, 328 (1951).

    Google Scholar 

  • Yoshimura, T., and H. Momoi: Vanadium silicate minerals from the Yamato Mine, Kagoshima Prefecture, Japan. Scient. Rep. Fac. Sci. Kyushu Univ. 7, Geol. 85–90 (1964).

    Google Scholar 

  • Zen E-AN: Validity of “Vegard's Law”. Am. Mineralogist 41, 523–524 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

S.A. UMP Publication No. 5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rickwood, P.C. On recasting analyses of garnet into end-member molecules. Contr. Mineral. and Petrol. 18, 175–198 (1968). https://doi.org/10.1007/BF00371808

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371808

Keywords

Navigation