Skip to main content
Log in

Genesis of the calc-alkaline igneous rock suite

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A high pressure experimental study of the partial melting fields of synthetic high-alumina olivine tholeiite, high-alumina quartz tholeiite, basaltic andesite, andesite, dacite and rhyodacite under dry and wet \(\left( {P_{{\text{H}}_{\text{2}} {\text{O}}} < P_{{\text{LOAD }}} } \right)\) conditions has been conducted in order to investigate possible origins of the calc-alkaline series from the upper mantle. Detailed analyses of crystallizing phases using the electron microprobe has enabled calculation of the liquid line of descent in these compositions at various pressures.

At 27–36 kb garnet and clinopyroxene are the liquidus or near-liquidus phases in dry tholeiite, basaltic andesite and andesite, while quartz is the liquidus phases in dry dacite and rhyodacite. Under wet conditions at 27 kb garnet, not quartz, is the liquidus phase in the dacite. Qualitatively these results show that the low melting fraction of a quartz eclogite at 27–36 kb under dry conditions is of andesitic composition whereas under wet conditions it is rhyodacitic or granodioritic. At these pressures under dry conditions the andesite liquidus lies in a marked low temperature trough between the more basic and more acid compositions. Quantitatively, the calculated compositions of liquid fractionates for varying degrees of melting of the quartz eclogite bulk composition broadly follow the calc-alkaline trend.

At 9–10 kb under wet conditions \(\left( {P_{{\text{H}}_{\text{2}} {\text{O}}} < P_{{\text{LOAD }}} } \right)\) sub-silicic amphibole and pyroxenes are the near-liquidus phases in tholeiite and basaltic andesite compositions. Calcic plagioclase and garnet occur nearer the solidus. The calculated liquid fractionates follow the calc-alkaline trend and demonstrate that the calc-alkaline series may be derived by the partial melting of amphibolite at lower crustal depths under wet conditions \(\left( {P_{{\text{H}}_{\text{2}} {\text{O}}} < P_{{\text{LOAD }}} } \right)\), Or by the fractional crystallization of a hydrous basalt magma at similar depths.

These experimental results support two complementary hypotheses for the derivation of the calc-alkaline igneous rock suite from the mantle by a two stage igneous process. In the first stage of both hypotheses large piles of basalt are extruded on the earth's surface. Subsequently this pile of basalt may, under dry conditions, transform to quartz eclogite, sink into the mantle and finally undergo partial melting at 100–150 kms depth. This partial melting gives rise to the calc-alkaline magma series leaving a residuum of clinopyroxene and garnet. Alternatively, if wet conditions prevail in the basalt pile and the geotherms remain high, partial melting of the basalt may take place near the base of the pile, at about 10 kb pressure \(\left( {P_{{\text{H}}_{\text{2}} {\text{O}}} < P_{{\text{LOAD }}} } \right)\). The liquids so formed constitute the calc-alkaline suite and the residuum consists of amphibole, pyroxenes and possibly minor garnet and calcic plagioclase. Both models may be directly linked to the hypothesis of sea-floor spreading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto, S.: Thermo-magnetic study of ferromagnetic minerals contained in igneous rocks. J. Geomag. Geoelect. 6, 1–14 (1954).

    Google Scholar 

  • —: Magnetic properties of ferromagnetic minerals contained in igneous rocks. Jap. J. Geophys. 1, 1–31 (1955).

    Google Scholar 

  • Anderson, C. A.: Volcanoes of the Medicine Lake Highland, California. Calif. Univ., Dept. Geol. Sci. Bull. 25, 347–422 (1941).

    Google Scholar 

  • Aoki, K.: On hornblende from Ammadaki, Iki Islands, Northern Kyushu, Japan. J. Japan. Assoc. Mineralogists, Petrologists, Geologists 45, 115–119 (1961).

    Google Scholar 

  • Bowen, N. L.: The evolution of igneous rocks. Princeton: Univ. Press 1928.

    Google Scholar 

  • Boyd, F. R., and J. L. England: Apparatus for phase-equilibrium measurements at pressures up to 50 kb and temperatures up to 1750° C. J. Geophys. Research 65, 741–748 (1960).

    Google Scholar 

  • —: Effect of pressure on the melting point of diopside, CaMgSi2O6 and albite NaAlSi3O8 in the range up to 50 kb. J. Geophys. Research 68, 311–323 (1963).

    Google Scholar 

  • Branch, C. D.: Genesis of magma for acid calc-alkaline volcano-plutonic formations. Tectonophysics 4, 83–100 (1967).

    Google Scholar 

  • Buddington, A. F.: The origin of anorthosite re-evaluated. Records Geol. Survey India 86, 421–432 (1961).

    Google Scholar 

  • Byers Jr., F. M.: Petrology of three volcanic suites, Umnak and Bogoslof Islands, Aleutian Islands, Alaska. Bull. Geol. Soc. 72, 93–128 (1961).

    Google Scholar 

  • Carmichael, I. S. E.: The petrology of Thingmuli, a Tertiary volcano in eastern Iceland. J. Petrology 5, 435–460 (1964).

    Google Scholar 

  • —: The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contr. Mineral. and Petrol. 14, 36–64 (1967).

    Google Scholar 

  • Clark, R. H.: Petrology of the volcanic rocks of Tongariro sub-division. Bull. New Zealand Geol. Surv. 40, Appendix 2, 107–123 (1960).

    Google Scholar 

  • Coats, R. R.: Magmatic differentiation in Tertiary and Quaternary volcanic rocks from Adak and Kanaga Islands, Aleutian Islands, Alaska. Bull. Geol. Soc. Amer. 63, 485–514 (1952).

    Google Scholar 

  • —: Magma type and crustal structure in the Aleutian Arc, in Crust of the Pacific Basin. Geophys. Mon. 6, 92–109 (1962).

    Google Scholar 

  • - Geologic reconnaissance of Semisopochnoi Island, Western Aleutian Islands, Alaska. U.S. Geol. Survey, Bull. 1028-0 (1959).

  • Coombs, H. A.: Mt. Baker, a Cascade volcano. Bull. Geol. Soc. Am. 50, 1493–1510 (1939).

    Google Scholar 

  • Cox, P. T.: Geology of the Rakaia gorge district. Trans. Proc. New Zealand Inst. 56, 91–111 (1926).

    Google Scholar 

  • Daly, R. A.: Igneous rocks and the depths of the earth. New York: McGraw-Hill Book Co. Inc. 1933.

    Google Scholar 

  • Deer, W. A.: The composition and paragenesis of the hornblendes of the Glen Tilt Complex, Perthshire. Mineral. Mag. 25, 56–74 (1938).

    Google Scholar 

  • Dickinson, W. R.: Circum-Pacific andesite types. Abst. Trans. Am. Geophys. Union 48, 253 (1967).

    Google Scholar 

  • Doe, B. D.: The bearing of lead isotopes on the source of granitic magma. J. Petrology 8, 51–83 (1967).

    Google Scholar 

  • Drewes, H., G. D. Fraser, G. L. Snyder, and H. F. Barnett jr.: Geology of Unalaska Island and adjacent insular shelf, Aleutian Islands, Alaska. U.S. Geol. Surv., Bull. 1028-S (1961).

  • Edwards, A. B.: On the occurrence of almandine garnets in some Devonian igneous rocks of Victoria. Proc. Roy. Soc. Victoria 49, 40–50 (1936).

    Google Scholar 

  • Engel, A. E. J.: Geologic evolution of North America. Science 140, 143–152 (1963).

    Google Scholar 

  • —, C. G. Engel and R. G. Havens: Chemical characteristics of oceanic basalts and the upper mantle. Bull. Geol. Soc. Am. 76, 719–734 (1965).

    Google Scholar 

  • Engel, C. G., R. L. Fisher and A. E. J. Engel: Igneous rocks of the Indian Ocean floor. Science 150, 605–610 (1965).

    Google Scholar 

  • Ewart, A.: Mineralogy and petrology of the Whakamaru Ignimbrite in the Maraetai area of the Taupo Volcanic Zone, New Zealand. New Zealand J. Geol. Geophys. 8, 611–677 (1965).

    Google Scholar 

  • -, and J. J. Stipp: Origin of the volcanic rocks of the Central North Island, New Zealand, as indicated by a study of Sr87/Sr86 ratios and Sr, Rb, K, U and Th abundances. Geochim. et Cosmochim. Acta (1967, in press).

  • Faure, G., and P. M. Hurley: The isotopic composition of strontium in oceanic and continental basalts: application to the origin of igneous rocks. J. Petrology 4, 31–50 (1963).

    Google Scholar 

  • Gast, P. W.: Limitations on the composition of the upper mantle. J. Geophys. Research 65, 1287–1297 (1960).

    Google Scholar 

  • Gorshkov, G. S.: Petrochemical features of volcanism in relation to the types of the earth's crust, in “Crust of the Pacific Basin”. Geophys. Mon. 6, 110–115 (1962).

    Google Scholar 

  • Green, D. H., and I. B. Lambert: Experimental crystallization of anhydrous granite at high pressures and temperatures. J. Geophys. Research 70, 5259–5268 (1965).

    Google Scholar 

  • —, and A. E. Ringwood: An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochim. et Cosmochim. Acta 31, 767–833 (1967a).

    Google Scholar 

  • —: The genesis of basalt magmas. Contr. Mineral. and Petrol. 15, 103–190 (1967b).

    Google Scholar 

  • Green, T. H.: High pressure experiments on the genesis of anorthosites, in “Petrology of the upper mantle”. Aust. Nat. Univ. Dept. Geophys. and Geochem., Publ. 444 (1966).

  • - High pressure experimental investigations on the origin of high-alumina basalt, andesite and anorthosite, Unpubl. Ph. D. Thesis, Aust. Nat. Univ. (1967a).

  • - Experimental fractional crystallization of quartz diorite and its application to the problem of anorthosite origin. In: Symposium on “Origin of Anorthosite” (ed. Y. Isachsen) (in press, 1967b).

  • - High pressure experimental study of the origin of anorthosite. In preparation (1968).

  • —, D. H. Green and A. E. Ringwood: The origin of high-alumina basalts and their relationships to quartz tholeiites and alkali basalts. Earth and Planetary Sci. Letters 2, 41–51 (1967).

    Google Scholar 

  • —, and A. E. Ringwood: Origin of the calc-alkaline igneous rock suite. Earth and Planetary Sci. Letters 1, 307–316 (1966).

    Google Scholar 

  • —: Origin of garnet phenocrysts in calc-alkaline rocks. Contr. Mineral. and Petrol. 18, 163–174 (1968).

    Google Scholar 

  • —, and A. Major: Friction effects and pressure calibration in a piston-cylinder apparatus at high pressure and temperature. J. Geophys. Research 71, 3589–3594 (1966).

    Google Scholar 

  • Hamilton, W.: Origin of high-alumina basalt, andesite and dacite magmas. Science 146, 635–637 (1964).

    Google Scholar 

  • Hess, H. H.: The Stillwater Igneous Complex, Montana. Geol. Soc. Am. Mem. 80 (1960).

  • Holmes, A.: The origin of igneous rocks. Geol. Mag. 69, 543–558 (1932).

    Google Scholar 

  • Hurley, P. M., P. C. Bateman, H. W. Fairbairn, and W. H. Pinson Jr.: Investigation of initial Sr87/Sr86 ratios of the Sierra Nevada plutonic province. Bull. Geol. Soc. Am. 76, 165–174 (1965).

    Google Scholar 

  • Irvine, T. N.: Origin of the ultramafic complex at Duke Island, southeast Alaska. Min. Soc. Am., Spec. Pap. 1, 36–45 (1963).

    Google Scholar 

  • Joplin, G. A.: A petrography of Australian igneous rocks. Sydney: Angus and Robertson 1965.

    Google Scholar 

  • Kosminskaya, I. P., S. M. Zverev, P. S. Veitsman, Yu. V. Tulina and R. M. Krakshina: Basic features of the crustal structure of the Sea of Okhotsk and the Kurile-Kamchatka zone of the Pacific Ocean from deep seismic sounding data. Bull. Acad. Sci. U.S.S.R., Geophys. Ser. (Eng. Transi.), 11–27 (1963).

  • Kuno, H.: Petrology of the Hakone Volcano and adjacent areas, Japan. Bull. Geol. Soc. Am. 61, 957–1020 (1950).

    Google Scholar 

  • —: High-alumina basalt. J. Petrology 1, 121–145 (1960).

    Google Scholar 

  • —: Some problems of calc-alkali rock series, Japan. J. Japan. Assoc. Mineralogists, Petrologists Econ. Geologists 53, 131–142 (1965).

    Google Scholar 

  • Larsen, E. S., and W. Draisin: Composition of the minerals in the rocks of the Southern Californian Batholith, Rept. 18th Sess. Internat. Geol. Congr. 1948, 2, 66–79 (1948).

    Google Scholar 

  • —, J. Irving, and F. A. Gonyer: Petrologic results of a study of the minerals from the Tertiary volcanic rocks of the San Juan region, Colorado. Am. Mineralogist 21, 679–701 (1936).

    Google Scholar 

  • —: Petrologic results of a study of the minerals from the Tertiary volcanic rocks of the San Juan region, Colorado. Am. Mineralogist 23, 417–429 (1938).

    Google Scholar 

  • Lidiak, E. G.: Petrology of andesitic, spilitic and keratophyric flow rock, north-central Puerto Rico. Bull. Geol. Soc. 76, 57–88 (1965).

    Google Scholar 

  • Lipman, P. W.: Mineralogy and paragenesis of amphibole from Gibson Peak Pluton, Northern California. Am. Mineralogist 49, 1321–1330 (1964).

    Google Scholar 

  • Macdonald, G. A., and T. Katsura: Chemical composition of Hawaiian lavas. J. Petrology 5, 82–133 (1964).

    Google Scholar 

  • —: Eruption of Lassen Peak, Cascade Range, California in 1915: example of mixed magmas. Bull. Geol. Soc. Am. 76, 475–482 (1965).

    Google Scholar 

  • Makarov, N. N., and V. A. Suprychev: Xenogenic garnet (pyrope-almandine) from volcanic rocks of the Crimea. Doklady Akad. Nauk S.S.R. (Eng. Transi.) 157, 64–67 (1964).

    Google Scholar 

  • Miyashiro, A.: Pyralspite garnets in volcanic rocks. J. Geol. Soc. Japan 61, 463–470 (1955).

    Google Scholar 

  • Nockolds, S. R.: The production of normal rock types by contamination and their bearing on petrogenesis. Geol. Mag. 71, 31–39 (1934).

    Google Scholar 

  • —, and R. Allen: The geochemistry of some igneous rock series. Geochim. et Cosmochim. Acta 4, 105–142 (1953).

    Google Scholar 

  • O'Hara, M. J.: Melting of garnet peridotite at 30 kilobars. Carnegie Inst. Wash. Year Book 62, 71–76 (1963a).

    Google Scholar 

  • —: Melting of bimineralic eclogite at 30 kilobars. Carnegie Inst. Wash. Year Book 62, 76–77 (1963b).

    Google Scholar 

  • —: Primary magmas and the origin of basalts. Scot. J. Geol. 1, 19–40 (1965).

    Google Scholar 

  • Oliver, R. L.: The origin of garnets in the Borrowdale Volcanic Series and associated rocks, English Lake District. Geol. Mag. 93, 121–139 (1956).

    Google Scholar 

  • Osborn, E. F.: Role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am. J. Sic. 257, 609–647 (1959).

    Google Scholar 

  • —: Reaction series for sub-alkaline igneous rocks based on different oxygen pressure conditions. Am. Mineralogist 47, 211–226 (1962).

    Google Scholar 

  • Poldervaart, A.: Three methods of graphic representation of chemical analyses of igeneous rocks. Trans. Roy. Soc. S. Africa 32, 177–188 (1949).

    Google Scholar 

  • —, and W. Elston: The calc-alkaline series and the trend of fractional crystallization of basaltic magma. A new approach at graphical representation. J. Geol. 62, 150–162 (1954).

    Google Scholar 

  • Ringwood, A. E.: Geology of the Deddick-Wulgulmerang area, East Gippsland. Proc. Roy. Soc. Victoria 67, 19–66 (1955).

    Google Scholar 

  • —: The chemical composition and origin of the earth. In: Advances in Earth Sciences (ed. P. M. Hurley), pp. 287–356. Cambridge, Mass: M.I.T. Press 1966.

    Google Scholar 

  • —, and D. H. Green: An experimental investigation of the gabbro-eclogite transformation and some geophysical implications. Tectonophysics 3, 383–427 (1966).

    Google Scholar 

  • Rubey, W. W.: Geologic history of sea water. Bull. Geol. Soc. Am. 62, 1111–1147 (1951).

    Google Scholar 

  • - Development of the hydrosphere and atmosphere with special reference to the probable composition of the early atmosphere. In: Crust of the Earth (ed. A. Poldervaart). Geol. Soc. Am., Spec. Papers 62, 631–650 (1955).

  • Ruckmick, J. C., and J. A. Noble: Origin of the ultramafic complex at Union Bay, south-eastern Alaska. Bull. Geol. Soc. Am. 70, 981–1018 (1959).

    Google Scholar 

  • Schmidt, R. G.: Petrology of the volcanic rocks, Saipan, Mariana Islands. U.S. Geol. Survey, Profess. Papers 280, 127–176 (1957).

    Google Scholar 

  • Shor Jr., G. G.: Structure of the Bering Sea and the Aleutian Ridge. Marine Geol. 1, 213–219 (1964).

    Google Scholar 

  • Snyder, G. L.: Geology of Little Sitkin Island, Alaska. U.S. Geol. Survey, Bull. 1028-H (1959).

  • Taylor Jr., H. P., and J. A. Noble: Origin of the ultramafic complexes in south-eastern Alaska. Rept. 21st Sess. Internat. Geol. Congr. 13, 175–187 (1960).

    Google Scholar 

  • Taylor, S. R., and A. J. R. White: Geochemistry of andesites and the growth of continents. Nature 208, 271–273 (1965).

    Google Scholar 

  • —: Trace element abundances in andesites. Bull. volcanol. 29, 177–194 (1966).

    Google Scholar 

  • Thayer, T. P.: Petrology of later Tertiary and Quaternary rocks of the north central Cascade Mountains in Oregon. Bull. Geol. Soc. Am. 48, 1611–1652 (1937).

    Google Scholar 

  • Tilley, C. E.: Some aspects of magmatic evolution. Quart. J. Geol. Soc. London 106, 37–61 (1950).

    Google Scholar 

  • Turner, F. J., and J. Verhoogen: Igneous and metamorphic petrology. New York: McGraw-Hill Book Co. 1960.

    Google Scholar 

  • Tuttle, O. F., and N. L. Bowen: Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol. Soc. Am., Mem. 74 (1958).

  • Verhoogen, J.: Mount St. Helens, a Recent Cascade volcano. Calif. Univ. Dept. Geol. Sci., Bull. 24, 263–302 (1937).

    Google Scholar 

  • Wager, L. R.: The major element variation of the layered series of the Skaergaard intrusion and a re-estimation of the average composition of the hidden layered series and of the successive residual magmas. J. Petrology 1, 364–398 (1960).

    Google Scholar 

  • —, and R. L. Mitchell: The distribution of trace elements during strong fractionation of basic magma: a further study of the Skaergaard intrusion, East Greenland. Geochim. et Cosmochim. Acta 1, 129–208 (1951).

    Google Scholar 

  • Waters, A. C.: Volcanic rocks and the tectonic cycle. In: Crust of the Earth (ed. A. Poldervaart). Geol. Soc. Am., Spec. Papers 62, 703–722 (1955).

  • Wilcox, R. E.: Petrology of Paricutin Volcano, Mexico. U.S. Geol. Survey, Bull. 965-C (1954).

  • Wilkinson, J. F. G.: Some aspects of calc-alkali rock genesis. J. Proc. Roy. Soc. N.S. Wales 99, 69–77 (1966).

    Google Scholar 

  • —, R. H. Vernon and S. E. Shaw: The petrology of an adamellite-porphyrite from the New England Bathylith (New South Wales). J. Petrology 5, 461–488 (1964).

    Google Scholar 

  • Williams, H.: Geology of the Lassen Volcanic National Park, California. Calif. Univ., Dept. Geol. Sci., Bull. 21, 195–385 (1932).

    Google Scholar 

  • —: Mt. Shasta, California. Zeit. Vulk. 15, 225–253 (1934).

    Google Scholar 

  • —: Newberry Volcano of Central Oregon. Bull. Geol. Soc. Am. 4–6, 253–304 (1935).

    Google Scholar 

  • - The geology of Crater Lake National Park, Oregon. Carnegie Inst. Wash. Publ. 540 (1942).

  • - Volcanoes of the Paricutin Region, Mexico. U.S. Geol. Survey, Bull. 965B (1950).

  • —, F. J. Turner and C. M. Gilbert: Petrography. San Francisco: W. H. Freeman and Co. 1958.

    Google Scholar 

  • Wilson, J. T.: The development and structure of the crust. In: The Earth as a Planet (ed. G. P. Kuiper), pp. 138–214. Chicago: Univ. Chicago Press 1954.

    Google Scholar 

  • Yoder Jr., H. S.: Experimental studies bearing on anorthosites. Abst. in Symposium: Origin of Anorthosite (ed. Y. Isachsen), p. 22. Plattsburgh, New York: State Univ. N.Y. 1966.

    Google Scholar 

  • —, and C. E. Tilley: Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J. Petrology 3, 342–532 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, T.H., Ringwood, A.E. Genesis of the calc-alkaline igneous rock suite. Contr. Mineral. and Petrol. 18, 105–162 (1968). https://doi.org/10.1007/BF00371806

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371806

Keywords

Navigation