Skip to main content
Log in

A miscibility gap in trioctahedral Mn-Mg-Fe chlorites: Evidence from the Lienne Valley manganese deposit, Ardennes, Belgium

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Low-temperature veinlets crosscutting low-grade manganiferous ironstones of Ordovician age contain four texturally distinct types of chlorites with nearly constant Al/Si-ratios that form two separate populations regarding their Mn/Mg/Fe-ratios: One with low iron contents (<1.5 w.% FeO) and molar Mg/Mn-ratios just below unity (magnesian pennantites), the other with higher iron (7–11 w.% FeO) and Mg/Mn≳4 (manganoan clinochlores). The two populations, which can be distinguished readily by their characteristic optical elongation and dispersion colors, are intimately intergrown and have formed partly during consecutive stages of a chlorite crystallization sequence, partly by simultaneous growth and possibly even as exsolution products of a pre-existing homogeneous chlorite phase of intermediate composition. These findings indicate a miscibility gap in the chlorite solid solutions beginning along the binary Mg-Mn series and extending into the ternary system. There may be a solvus relationship with the miscibility gap closing at higher temperatures (400° C?). One very intensely colored chlorite type of the pennantite population may contain Fe3+ or Mn3+ or both.

Additional minerals in the veinlets are spessartine, kutnahorite, quartz, and an allanite-piemontite phase. Crystallization began near the centers of the present veins with Mn-rich minerals and continued towards their edges and into the extremely thin ends of the developing fractures with the deposition of the more Fe-rich chlorites that are in equilibrium with the ironstone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albee AL (1962) Relationships between the mineral association, chemical composition and physical properties of the chlorite series. Am Mineral 47:851–870

    Google Scholar 

  • Asselberghs E, Geukens F (1959) Texte explicatif de la feuille Harzé — La Gleize n∘149. Carte géologique de la Belgique à l'échelle 1/25.000

  • Bailey SW (1980) Summary of recommendations of the AIPEA nomenclature committee. Can Mineral 18:143–150

    Google Scholar 

  • Bannister FA, Hey MH, Smith WC (1955) Grovesite, the manganese-rich analogue of berthierine. Mineral Mag 30:645–647

    Google Scholar 

  • Berger P (1965) Les dépôts sédimentaires de manganèse de la Lienne inférieure. Ann Soc. Géol Belgique 88:B246–267

    Google Scholar 

  • Chopin C (1978) Les paragenèses réduites ou oxidées de concentrations manganésifères des “schistes lustrés” de Haute-Maurienne (Alpes françaises). Bull Mineral 101:514–531

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1962) Rock-forming minerals. Vol 3, Sheet silicates. Longmans, London p 270

    Google Scholar 

  • Foster MD (1962) Interpretation of the composition and a classification of the chlorites. US Geol Survey Prof Paper 414-A, p 33

    Google Scholar 

  • Fourmarier P, Calembert L (1941) La stratigraphie du Salmien supérieur de la Lienne. Bull Acad roy Belgique Cl Sci 5e Série 27:505–512

    Google Scholar 

  • Fourmarier P, Calembert L (1942) La tectonique du Salmien supérieur de la Lienne. Ann Soc Géol Belgique 65:B88–100

    Google Scholar 

  • Fransolet A-M (1972) Données nouvelles sur la carpholite de Meuville (vallée de la Lienne, Belgique). Bull Soc Fr Mineral Cristallogr 95:84–97

    Google Scholar 

  • Fransolet A-M, Mélon J (1975) Données nouvelles sur des minér-aux de Belgique. Bull Soc roy Sci Liège Belgique 44:157–160

    Google Scholar 

  • Fransolet A-M, Kramm U, Schreyer W (1977) Metamorphose und Magmatismus im Venn-Stavelot-Massiv, Ardennen. Fortschr Mineral 55:Beih 2, 75–103

    Google Scholar 

  • Frondel C (1955) Two chlorites: Gonyerite and melanolite. Am Mineral 40:1090–1094

    Google Scholar 

  • Hey MH (1954) A new review of the chlorites. Mineral Mag 30:277–292

    Google Scholar 

  • Hsu LC (1968) Selected phase relationships in the system Al-Mn-Fe-Si-O-H: A model for garnet equilibria. J Petrol 9:40–83

    Google Scholar 

  • Kayupova MM (1965) Pennantite from the Ushkatyn deposit, central Kazakhstan. Dokl Acad Sci USSR Earth Sci Sect 163:97–100

    Google Scholar 

  • Kayupova MM (1967) The ferruginous and magnesium varieties of pennantite from the Atasui deposits in central Kazakhstan. Zap Vses Min Obshch 96:155–161 (in Russian)

    Google Scholar 

  • Kramm U (1973) Chloritoid stability in manganese rich low-grade metamorphic rocks, Venn-Stavelot Massif, Ardennes. Contrib Mineral Petrol 41:179–196

    Google Scholar 

  • Kramm U (1979) Kanonaite-rich viridines from the Venn-Stavelot Massif, Belgian Ardennes. Contrib Mineral Petrol 69:387–395

    Google Scholar 

  • Mélon J, Bourguignon P, Fransolet A-M (1976) Les minéraux de Belgique. Edit. G Lelotte Dison Belgium, p 282

  • Nelson BW, Roy R (1958) Synthesis of the chlorites and their structural and chemical constitution. Am Mineral 43:707–725

    Google Scholar 

  • Peacor DR, Essene EJ, Simmons WB Jr, Bigelow WC (1974) Kellyite, a new Mn-Al member of the serpentine group from Bald Knob, North Carolina, and new data on grovesite. Am Mineral 59:1153–1156

    Google Scholar 

  • Radoslovich EW (1962) The cell dimensions and symmetry of layerlattice silicates II. Regression relations. Am Mineral 47:617–636

    Google Scholar 

  • Schreyer W (1975) New petrologic evidence for Hercynian metamorphism in the Venn-Stavelot Massif, Belgium. Geol Rundschau 64:819–830

    Google Scholar 

  • Schreyer W, Horrocks PC, Abraham K (1984) High-magnesian staurolite in a sapphirine-garnet rock from the Limpopo Belt, Southern Africa. Contrib Mineral Petrol 86:200–207

    Google Scholar 

  • Shirozu H (1958) X-ray powder patterns and cell dimensions of some chlorites in Japan, with a note on their interference colours. Mineral J Japan 2:209–223

    Google Scholar 

  • Smith WC, Bannister FA, Hey MH (1946) Pennantite, a new manganese-rich chlorite from Benallt mine, Rhiw, Carnarvonshire. Mineral Mag 27:217–220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreyer, W., Fransolet, A.M. & Abraham, K. A miscibility gap in trioctahedral Mn-Mg-Fe chlorites: Evidence from the Lienne Valley manganese deposit, Ardennes, Belgium. Contr. Mineral. and Petrol. 94, 333–342 (1986). https://doi.org/10.1007/BF00371442

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371442

Keywords

Navigation