Skip to main content
Log in

Two-pyroxene thermobarometry with new experimental data in the system CaO-MgO-Al2O3-SiO2

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In the system CaO-MgO-Al2O3-SiO2 (CMAS), equilibrium alumina contents of orthopyroxene and clinopyroxene, both coexisting with spinel + forsterite or spinel + anorthite, have been reversed in 16 runs at 1,300–1,400°C and 10.2–20.8 kbar, using PbO flux. The present data and the data of Perkins and Newton (1980) have been modeled using the Redlich-Kister equation. The resulting model satisfies most of the reversed data in the CMAS system, agrees very well with thermochemical measurements, and is consistent with the model for the enstatite-diopside join of Lindsley et al. (1981) and with the system MgO-Al2O3-SiO2 of Gasparik and Newton (1984). The present data, however, do not confirm the negative slopes of Al-isopleths in the spinel lherzolite field suggested by Dixon and Presnall (1980). The new model has been used to calculate a graphical two-pyroxene thermobarometer applicable to natural two-pyroxene assemblages closely approaching in composition the CMAS system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akella J (1976) Garnet pyroxene equilibria in the system CaSiO3- MgSiO3-Al2O3 and in a natural mineral mixture. Am Mineral 61:589–598

    Google Scholar 

  • Benna P, Bruno E, Facchinelli A (1981) X-ray determination and equilibrium composition of clinopyroxenes in the system CaO-MgO-Al2O3-SiO2. Contrib Mineral Petrol 78:272–278

    Google Scholar 

  • Birch F (1966) Compressibility; Elastic constants. In: Clark SP (ed) Handbook of Physical Constants. Geol Soc Am Memoir 97, New York, 97–173

  • Cameron M, Papike JJ (1980) Crystal chemistry of silicate pyroxenes. In: Prewitt CT (ed) Reviews in Mineralogy, vol 7, Pyroxenes. Mineral Soc Am, Washington, D.C., 5–92

    Google Scholar 

  • Charlu TV, Newton RC, Kleppa OJ (1975) Enthalpies of formation at 970 K of compounds in the system MgO-Al2O3-SiO2 by high temperature solution calorimetry. Geochim Cosmochim Acta 39:1487–1497

    Google Scholar 

  • Charlu TV, Newton RC, Kleppa OJ (1978) Enthalpy of formation of some lime silicates by high-temperature solution calorimetry, with discussion of high pressure phase equilibria. Geochim Cosmochim Acta 42:367–375

    Google Scholar 

  • Chatterjee ND, Schreyer W (1972) The reaction enstatitess + sillimanite = sapphiriness + quartz in the system MgO-Al2O3- SiO2. Contrib Mineral Petrol 36:49–62

    Google Scholar 

  • Czank M, Schulz H (1971) Thermal expansion of anorthite. Naturwiss 58 Jahr 2:94

    Google Scholar 

  • Danckwerth PA, Newton RC (1978) Experimental determination of the spinel peridotite to garnet peridotite reaction in the system MgO-Al2O3-SiO2 in the range 900°-1,100° C and Al2O3 isopleths of enstatite in the spinel field. Contrib Mineral Petrol 66:189–201

    Google Scholar 

  • Dixon JR (1980) A spinel lherzolite barometer. Ph.D. Thesis, Univ of Texas, Dallas

    Google Scholar 

  • Dixon JR, Presnall DC (1980) Al2O3 content of enstatite: a spinel lherzolite barometer. Geol Soc Am Abstr Progr 12:414

    Google Scholar 

  • Fujii T (1977) Pyroxene equilibria in spinel lherzolite. Carnegie Inst Wash Yearb 76:569–572

    Google Scholar 

  • Gasparik T (1981) Thermodynamic properties of pyroxenes in the NCMAS system saturated with silica. Ph.D. Thesis, State Univ of New York, Stony Brook

    Google Scholar 

  • Gasparik T (1984) Experimentally determined stability of clinopyroxene+garnet+corundum in the system CaO-MgOAl2O3-SiO2. Am Mineral, in press

  • Gasparik T, Newton RC (1984) The reversed alumina contents of orthopyroxene in equilibrium with spinel and forsterite in the system MgO-Al2O3-SiO2. Contrib Mineral Petrol 85:186–196

    Google Scholar 

  • Grover JE (1980) Thermodynamics of pyroxenes. In: Prewitt CT (ed) Reviews in Mineralogy, vol 7, Pyroxenes. Mineral Soc Am, Washington, D.C., 341–417

    Google Scholar 

  • Haselton HT (1979) Calorimetry of synthetic pyrope-grossular garnets and calculated stability relations. Ph.D. Thesis, Univ of Chicago

  • Haselton HT, Hemingway BS, Robie RA (1982) Low-temperature heat-capacity measurements on synthetic CaAl2SiO6 pyroxene. EOS 63:467

    Google Scholar 

  • Hazen RM (1976) Effects of temperature and pressure on the crystal structure of forsterite. Am Mineral 61:1280–1293

    Google Scholar 

  • Hazen RM, Finger LW (1978) Crystal structures and compressibilities of pyrope and grossular to 60 kbar. Am Mineral 63:297–303

    Google Scholar 

  • Herzberg CT (1976) The plagioclase-lherzolite to spinel-lherzolite facies boundary; its bearing on corona structure formation and tectonic history in the Norwegian caledonides. In: Biggar GM (ed) Progress in Experimental Petrology, D-3, The Natural Environment Research Council Publications, London, 233–235

    Google Scholar 

  • Herzberg CT (1978) Pyroxene geothermometry and geobarometry: experimental and thermodynamic evaluation of some subsolidus phase relations involving pyroxenes in the system CaO-MgO-Al2O3-SiO2. Geochim Cosmochim Acta 42:945–957

    Google Scholar 

  • Holland TJB (1981) Thermodynamic analysis of simple mineral systems. In: Newton RC, Navrotsky A, Wood BJ (eds) Advances in Physical Geochemistry, vol 1, Thermodynamics of Minerals and Melts. Springer-Verlag, New York, 19–34

    Google Scholar 

  • Howells S, O'Hara MJ (1978) Low solubility of alumina in enstatite and uncertainties in estimated palaegeotherms. Phil Trans R Soc Lond A 288:471–486

    Google Scholar 

  • Jenkins DM, Newton RC (1979) Experimental determination of the spinel peridotite to garnet peridotite inversion at 900° C and 1,000° C in the system CaO-MgO-Al2O3-SiO2, and at 900° C with natural garnet and olivine. Contrib Mineral Petrol 68:407–419

    Google Scholar 

  • Krupka KM, Kerrick DM, Robie RA (1979) Heat capacities of synthetic orthoenstatite and natural anthophyllite from 5 to 1000 K. EOS 60:405

    Google Scholar 

  • Kushiro I, Yoder HS Jr (1966) Anorthite forsterite and anorthiteenstatite reactions and their bearing on the basalt-eclogite transformation. J Petrol 7:337–362

    Google Scholar 

  • Levien L, Prewitt CT (1981) High-pressure structural study of diopside. Am Mineral 66:315–323

    Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493

    Google Scholar 

  • Lindsley DH, Grover JE, Davidson PM (1981) The thermodynamics of the Mg2Si2O6-CaMgSi2O6 join: a review and an improved model. In: Newton RC, Navrotsky A, Wood BJ (eds) Advances in Physical Geochemistry, vol 1. Thermodynamics of Minerals and Melts. Springer-Verlag, New York, 149–175

    Google Scholar 

  • MacGregor ID (1974) The system MgO-Al2O3-SiO2: Solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions. Am Mineral 59:110–119

    Google Scholar 

  • Newton RC, Charlu TV, Kleppa OJ (1977) Thermochemistry of high pressure garnets and clinopyroxenes in the system Ca4MgO-Al2O3-SiO2. Geochim Cosmochim Acta 41:369–377

    Google Scholar 

  • Obata M (1976) The solubility of Al2O3 in orthopyroxenes in spinel and plagioclase peridotites and spinel pyroxenite. Am Mineral 61:804–816

    Google Scholar 

  • O'Hara MJ, Howells S (1978) The enstatite-pyrope geobarometer. In: MacKenzie WS (ed) Progress in Experimental Petrology, D-4, The Natural Environment Research Council Publications, London, 175–179

    Google Scholar 

  • Perkins D, Newton RC (1980) The compositions of coexisting pyroxenes and garnet in the system CaO-MgO-Al2O3-SiO2 at 900°–1,100°C and high pressures. Contrib Mineral Petrol 75:291–300

    Google Scholar 

  • Presnall DC (1976) Alumina content of enstatite as a geobarometer for plagioclase and spinel lherzolites. Am Mineral 61:582–588

    Google Scholar 

  • Ralph RL, Ghose S (1980) Enstatite, Mg2Si2O6: Compressibility and crystal structure at 21 kbar. EOS 61:409

    Google Scholar 

  • Redlich O, Kister AT (1948) Thermodynamics of nonelectrolyte solutions. Algebraic representation of thermodynamic properties and the classification of solutions. Indus Eng Chem 40:345–348

    Google Scholar 

  • Robie RA, Hemingway BS (1982) Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Co2SiO4 between 5 and 380 K. Am Mineral 67:470–482

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. US Geol Surv Bull 1452, Washington, D.C.

  • Saxena SK, Ghose S (1971) Mg2+-Fe2+ order-disorder and the thermodynamics of the orthopyroxene crystalline solution. Am Mineral 56:532–559

    Google Scholar 

  • Skinner BJ (1966) Thermal expansion. In: Clark SP (ed) Handbook of Physical Constants. Geol Soc Am Memoir 97, New York, 75–96

  • Vaidya SN, Bailey S, Pasternack T, Kennedy GC (1973) Compressibility of fifteen minerals to 45 kilobars. J Geophys Res 78:6893–6898

    Google Scholar 

  • Wood BJ, Holloway JR (1984) A thermodynamic model for subsolidus equilibria in the system CaO-MgO-Al2O3-SiO2. Geochim Cosmochim Acta 48:159–176

    Google Scholar 

  • Yoder HS Jr (1967) Spilites and serpentinites. Carnegie Inst Wash Yearb 65:269–279

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasparik, T. Two-pyroxene thermobarometry with new experimental data in the system CaO-MgO-Al2O3-SiO2 . Contr. Mineral. and Petrol. 87, 87–97 (1984). https://doi.org/10.1007/BF00371405

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371405

Keywords

Navigation