Skip to main content
Log in

From the simplest chemical system to the natural one: garnet peridotite barometry

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The available experimental data on garnet-bearing-assemblages for synthetic chemical systems (MAS, FMAS, CMAS) have been used to calibrate consistent models for the Al-solubility in orthopyroxene coexisting with garnet, on the basis of equilibrium reaction Py(opx) ⇔ Py(gt). The alternative reaction En(opx)+MgTs(opx) ⇔ Py(gt) is discarded as it yields larger a-posteriori uncertainties. To provide a reliable equation, directly applicable to natural garnet lherzolites, each successive synthetic-system calibration is tested against Mori and Green's (1978) natural-system reequilibration data. For the MAS system, an ideal solution model with constant ΔH°, ΔV° and ΔS° based on 12-oxygen structural formulae for aluminous pyroxenes yields the best fit (GPa, K),

$${\text{25,134 + 9,941 }}P - 23.177{\text{ }}T{\text{ + }}RT{\text{ ln (}}X_{{\text{Al}}}^{TB'} {\text{) = 0}}$$

. The MAS synthetic-system calibration can be directly applied to the FMAS system by adding an empirical correction term (20,835 [X gtFe ]2) independent of either pressure and temperature. However, this correction term is not important because of the limited Fe content of mantle peridotites. When calcium is added to the MAS system, the equilibrium constant is calculated as:

$$K_{{\text{CMAS}}} = {{[(1 - X_{{\text{Ca}}}^{M2} )^2 (X_{{\text{Al}}}^{TB'} )]} \mathord{\left/ {\vphantom {{[(1 - X_{{\text{Ca}}}^{M2} )^2 (X_{{\text{Al}}}^{TB'} )]} {[(1 - X_{{\text{Ca}}}^X )^3 (X_{{\text{Al}}}^Y )^2 ]}}} \right. \kern-\nulldelimiterspace} {[(1 - X_{{\text{Ca}}}^X )^3 (X_{{\text{Al}}}^Y )^2 ]}}$$

where M2 and TB′ are pyroxene sites and X and Y are garnet sites. Up to 5 GPa, X XCa ∼ and the CMAS experimental data agree well with the MAS model, but for Yamada and Takahashi's (1983) higher pressure experiments (up to 10 GPa), this no longer holds. Indeed, the garnet solid solution does not behave ideally and an asymmetric regular solution model is needed for application to the deepest natural samples available (>7GPa). Calibration based on new high pressure data yields,

$$\begin{gathered} \Delta G_{{\text{CMAS}}}^{XS} = (X_{{\text{Ca}}}^X )(1 - X_{{\text{Ca}}}^X )(0.147 - X_{{\text{Ca}}}^X ) \hfill \\ {\text{ }} \cdot {\text{(6,440,535 - 1,490,654 }}P{\text{)}} \hfill \\ \end{gathered}$$

. According to tests of the inferred solution model, the CFMAS system is a good analogue of natural systems in the pressure, temperature and composition ranges covered by the natural-system reequilibration data (up to 1,500° C and 4 GPa). Simultaneous application of this thermobarometer and of the two-pyroxene mutual solubility thermometer (Bertrand and Mercier 1985) to the phases of the garnet-peridotite xenoliths from Thaba Putsoa, Lesotho, yields a refined paleogeotherm for southern Africa strongly contrasting with previous results. The “granular” nodules yield a thermal gradient of about 8 K/km characteristic of a lithospheric-type environment, whereas the “sheared” ones show a lower gradient of about 1 K/km. This is a typical geotherm expected for a steady thermal state with an inflexion point at the depth of about 160 km corresponding to the lithosphere/asthenosphere boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertrand P, Mercier JCC (1985) The mutual solubility of coexisting ortho- and clinopyroxene: toward an absolute geothermometer for the natural system. Earth Planet Sc Lett 76:109–122

    Google Scholar 

  • Bonczar LJ, Graham EK, Wang H (1977) The pressure and temperature dependance of the elastic constants of pyrope garnet. J Geophys Res 82:2529–2534

    Google Scholar 

  • Boyd FR (1970) Garnet peridotites and the system CaSiO3-MgSiO3-Al2O3. Mineral Soc Am Spec Pap 3:63–75

    Google Scholar 

  • Boyd FR (1973) The pyroxene geotherm. Geochim Cosmochim Acta 37:2533–2546

    Google Scholar 

  • Boyd FR (1974) Ultramafic nodules from the Frank Smith kimber-lite pipe, South Africa. Carnegie Inst Washington Yearb 73:285–294

    Google Scholar 

  • Boyd FR, England JL (1964) The system enstatite-pyrope. Carnegie Inst Washington Yearb 63:157–161

    Google Scholar 

  • Charlu TV, Newton RC, Kleppa OJ (1975) Enthalpies of solution at 970 K of compounds in the system MgO-Al2O3-SiO2 by high temperature solution calorimetry. Geochim Cosmochim Acta 39:1487–1497

    Google Scholar 

  • Chatterjee ND, Schreyer W (1972) The reaction enstatite + sillimanite-sapphirine+quartz in the system MgO-Al2O3-SiO2. Contrib Mineral Petrol 36:49–62

    Google Scholar 

  • Danchin RV, Boyd FR (1976) Ultramafic nodules from the Premier kimberlite pipe, South Africa. Carnegie Inst Washington Yearb 75:531–538

    Google Scholar 

  • Danckwerth PA, Newton RC (1978) Experimental determination of the spinel peridotite to garnet peridotite reaction in the system MgO-Al2O3-SiO2 in the range 900–1,100° C and Al2O3 isopleths of enstatite in the spinel field. Contrib Mineral Petrol 66:189–201

    Google Scholar 

  • Dempsey MJ (1980) Evidences for structural changes in garnet caused by calcium substitution. Contrib Mineral Petrol 71:281–282

    Google Scholar 

  • Frisillo AL, Barsch GR (1972) Measurement of single-crystal elastic constants of bronzite as function of pressure and temperature. J Geophys Res 77:6360–6384

    Google Scholar 

  • Frisillo AL, Buljan ST (1972) Linear thermal expansion coefficients of orthopyroxene to 1,000° C. J Geophys Res 77:7115–7117

    Google Scholar 

  • Ganguly J, Ghose S (1979) Aluminous orthopyroxene: order-disorder, thermodynamic properties and petrologic implications. Contrib Mineral Petrol 69:375–385

    Google Scholar 

  • Gasparik T (1984) Two-pyroxene thermobarometry with new experimental data in the system CaO-MgO-Al2O3-SiO2. Contrib Mineral Petrol 87:87–97

    Google Scholar 

  • Harley SL (1984) An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib Mineral Petrol 86:359–373

    Google Scholar 

  • Haselton HT, Newton RC (1980) Thermodynamics of pyropegrossular garnets and their stabilities at high temperatures and high pressures. J Geophys Res 85:6973–6982

    Google Scholar 

  • Haselton HT, Westrum EF (1980) Low-temperature heat capacities of synthetic pyrope, grossular and pyrope60 grossular40. Geochim Cosmochim Acta 44:701–709

    Google Scholar 

  • Kawasaki T, Matsui Y (1983) Thermodynamic analyses of equilibria involving olivine, orthopyroxene and garnet. Geochim Cosmochim Acta 47:1661–1679

    Google Scholar 

  • Kelly KK (1960) Contributions of the data of theoretical metallurgy: pt. 13. High temperature heat content, heat capacity and entropy data for the elements and inorganic compounds. US Bur Mines Bull, 584 p

  • Kerrick DM, Darken LS (1975) Statistical thermodynamic models for ideal oxide and silicate solid solutions, with application to plagioclase. Geochim Cosmochim Acta 39:1431–1442

    Google Scholar 

  • Krupka KM, Kerrick DM, Robie RA (1979) Heat capacities of synthetic orthoenstatite and natural anthophyllite from 5 to 1,000 K (abstract). EOS 60:405

    Google Scholar 

  • Lane DL, Ganguly J (1980) Al2O3 solubility in orthopyroxene in the system MgO-Al2O3-SiO2: a reevaluation and mantle geotherms. J Geophys Res 85:6963–6972

    Google Scholar 

  • MacGregor ID (1974) The system MgO-Al2O3-SiO2: solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions. Am Mineral 59:110–119

    Google Scholar 

  • Mercier JCC (1976) Single-pyroxene geothermometry and geobarometry. Am Mineral 61:603–615

    Google Scholar 

  • Mercier JCC (1980) Single-pyroxene thermobarometry. Tectonophysics 70:1–37

    Google Scholar 

  • Mercier JCC, Bertrand P (1984) Thermobarométrie pyroxénique: quelques méthodes basées sur des réactions de transfert. In: Thermométrie et barométrie géologiques, V Gabis, M Lagache (eds), pp 237–280. Soc Fr Mineral Cristallogr, Paris

    Google Scholar 

  • Mercier JCC, Carter NL (1975) Pyroxene geotherms. J Geophys Res 80:3349–3362

    Google Scholar 

  • Mori T, Green DH (1978) Laboratory duplication of phase equilibria observed in natural garnet lherzolites. J Geol 86:83–97

    Google Scholar 

  • Newton RC, Thompson AB, Krupka KM (1977) Heat capacity of synthetic Mg3Al2Si3O12 from 350 to 1,000 K and the entropy of pyrope (abstract). EOS 58:523

    Google Scholar 

  • Nixon PH (1973) Lesotho Kimberlites. Lesotho Nat Dev Corp Maseru, Lesotho, 350 pp

    Google Scholar 

  • Perkins D III, Holland TJB, Newton RC (1981) The Al2O3 contents of enstatite in equilibrium with garnet in the system MgO-Al2O3-SiO2 at 15–40 kbar and 900–1,600° C. Contrib Miner Petrol 78:99–109

    Google Scholar 

  • Perkins D III, Newton RC (1980) The composition of coexisting pyroxenes and garnet in the system CaO-MgO-Al2O3-SiO2 at 900°–1,100° C and high pressures. Contrib Mineral Petrol 75:291–300

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. US Geol Surv Bull 1452:1–456

    Google Scholar 

  • Saxena SK, Ghose S (1971) Mg2+-Fe2+ order-disorder and the thermodynamics of the orthopyroxene crystalline solution. Am Mineral 56:532–559

    Google Scholar 

  • Skinner BJ (1956) Physical properties of end-members of the garnet group. Am Mineral 41:428–436

    Google Scholar 

  • Skinner BJ, Boyd FR (1964) Aluminous enstatites. Carnegie Inst Wash Yearb 63:163–165

    Google Scholar 

  • Sotin C, Bertrand P, Mercier JCC (1986) Physical and chemical properties of the upper mantle beneath precambrian shields. Phys Earth Planet Int in press

  • Tarantola A, Valette B (1982) Generalized non-linear inverse problems solved using the least-square criterion. Rev Geophys Space Phys 20:219–232

    Google Scholar 

  • Virgo D, Hafner SS (1969) Fe2+, Mg order disorder in heated orthopyroxenes. Mineral Soc Am Spec Paper 2:67–81

    Google Scholar 

  • Wood BJ, Banno S (1973) Garnet-orthopyroxene and orthopyrox-ene-clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42:109–124

    Google Scholar 

  • Yamada H, Takahashi E (1983) Subsolidus phase relations between coexisting garnet and two pyroxenes at 50 to 100 kbar in the system CaO-MgO-Al2O3-SiO2. Dev Petrol 9:247–256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, P., Sotin, C., Mercier, JC.C. et al. From the simplest chemical system to the natural one: garnet peridotite barometry. Contr. Mineral. and Petrol. 93, 168–178 (1986). https://doi.org/10.1007/BF00371318

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371318

Keywords

Navigation