Skip to main content
Log in

Boundary element analysis for an interface crack between dissimilar elastoplastic materials

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The boundary element method (BEM) is presented for elastoplastic analysis of cracks between two dissimilar materials. The boundary integral equations and integral representation of stress rates are written in such a form that all integrals can be evaluated by the regular Gaussian quadrature rule. An advanced multidomain BEM formulation is suggested for the solution of analysed problems where the substantial reduction of stiffness matrix is observed. The elastoplastic behaviour is modelled through the use of an approximation for the plastic component of the stresses. The boundary and the yielding zone are discretized by elements with quadratic approximations. In numerical examples the path independence of the J- and L-integrals for a straight interface crack and a circular arc-shaped interface crack are investigated, respectively. The influence of the different values of Young's modulus on the J-integral, shape and size of plastic zones is treated too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aliabadi, M. H.; Rooke, D. P. 1991: Numerical fracture mechanics. Kluwer Academic Publ. Dordrecht

    Google Scholar 

  • Amestoy, M.; Bui H. D.; Labbens, R. 1981: On the definition of local path independent integrals in three-dimensional crack problems. Mechanics Res. Comm. 8: 231–236

    Google Scholar 

  • Atluri, S. N. 1982: Path-independent integrals in finite elasticity and inelasticity, with body forces, inertia, and arbitrary crack-face conditions. Engn. Fracture Mech. 16: 341–364

    Google Scholar 

  • Atluri, S. N. 1986: Energetic approaches and path independent integrals in fracture mechanics. In: Atluri, S. N. (ed.); Computational Methods in the Mechanics of Fracture, 121–127, Elsevier Sci. Publ.

  • Atluri, S. N.; Nishioka, T.; Nakagaki, M. 1984: Incremental path independent integrals in inelastic and dynamic fracture mechanics. Engn. Fracture Mech. 20: 209–244

    Google Scholar 

  • Balas, J.; Sladek, J.; Sladek, V. 1989: Stress analysis by boundary element method. Elsevier, Amsterdam

    Google Scholar 

  • Banerjee, P. K.; Henry, D. P.; Raveendra, S. T. 1989: Advanced inelastic analysis of solids by BEM. Int. J. Mech. Sci. 31: 309–322

    Google Scholar 

  • Blackburn, W. S.; Jackson, A. D.; Hellen, T. K. 1977: An integral associated with the state of a crack tip in non elastic material. Int. J. Fracture 13: 183–200

    Google Scholar 

  • Brebbia, C. A.; Telles, J. C. F.; Wrobel, L. C. 1984: Boundary element techniques: theory and applications in engineering Springer-Verlag, Berlin

    Google Scholar 

  • Chen, F. H. K.; Shield, R. T. 1977: Conservation laws in elasticity of the J-integral type. J. Appl. Math. Phys. (ZAMP) 28: 1–22

    Google Scholar 

  • Comninou, M. 1977: The interface crack. J. Appl. Mech. 44: 631–636

    Google Scholar 

  • Cruse, T. A., 1988: Boundary element analysis in computational fracture mechanics. Kluwer Academic Publ., Dordrecht

    Google Scholar 

  • Dallner, R.; Kuhn, G. 1993: Efficient evaluation of volume integrals in the boundary element method. Computer Meth. Appl. Mech. 109: 95–109

    Google Scholar 

  • England, A. H. 1965: A crack between dissimilar media. J. Appl. Mech. 32: 400–402

    Google Scholar 

  • Erdogan, F. 1965: Stress distribution in bonded dissimilar materials with cracks. J. Appl. Mech. 32: 403–410

    Google Scholar 

  • Eshelby, J. D. 1956: The continuum theory of lattice defects. In: Seitz, F.; Turnbull, D. (eds.) Solid state physics vol. 3, 79–144, Academic Press, New York

    Google Scholar 

  • Guiggiani, M.; Gigante, A. 1990: A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method. J. Appl. Mech. 57: 906–915

    Google Scholar 

  • Kita, E.; Kamiya, N. 1994: Subregion boundary element method. JSME Int. Jour. ser. A 37: 366–372

    Google Scholar 

  • Kishimoto, S.; Aoki, S.; Sakata, M. 1980: On the path independent integral-J. Engn. Fracture Mech. 13: 841–850

    Google Scholar 

  • Knowles, J. K.; Sternberg, E. 1972: On a class of conservation laws in linearized and finite elastostatics. Arch. Rat. Mech. Anal. 44: 187–211

    Google Scholar 

  • Leitao, V.; Aliabadi, M. H.; Rooke, D. P. 1993: Contour integrals for elastoplastic boundary element method formulation. Int. J. Fracture 64: R97-R103

    Google Scholar 

  • Leitao, V.; Aliabadi, M. H.; Rooke, D. P. 1995: The dual boundary element formulation for elastoplastic fracture mechanics. Int. J. Num. Meth. Engn. 38: 315–333

    Google Scholar 

  • Miyazaki, N.; Ikeda, T.; Soda, T.; Munakata, T. 1993a: Stress intensity factor analysis of interface crack using boundary element method. JSME Int. Jour. ser. A 36: 36–42

    Google Scholar 

  • Miyazaki, N.; Ikeda, T.; Soda, T.; Munakata, T. 1993b: Stress intensity factor analysis of interface crack using boundary element method — application of contour integral method. Engn. Fracture Mech. 45: 599–610

    Google Scholar 

  • Murakami, T. (ed.). 1987: Stress intensity factors handbook Pergamon Press, Tokyo

    Google Scholar 

  • Park, J. H.; Earmme, Y. Y. 1986: Application of conservation integrals to interfacial crack problems. Mech. Materials 5: 261–276

    Google Scholar 

  • Rice, J. 1968: A path-independent integral and approximate analysis of strain concentrations by notches and cracks. J. Appl. Mech. 35: 379–386

    Google Scholar 

  • Rice, J. 1988: Elastic fracture mechanics concepts for interfacial cracks. J. Appl. Mech. 55: 98–103

    Google Scholar 

  • Rice, J.; Sih, G. C. 1965: Plane problems of cracks in dissimilar media. J. Appl. Mech. 32: 418–423

    Google Scholar 

  • Shih, C. F.; Asaro R. J. 1990: Elastic-plastic and asymptotic fields of interface cracks. Int. J. Fracture 42: 101–116

    Google Scholar 

  • Sladek, V.; Sladek, J.; Tanaka, M. 1993: Regularization of hypersingular and nearly singular integrals in the potential theory and elasticity. Int. J. Num. Meth. Engn. 36: 1609–1628

    Google Scholar 

  • Tanaka, M.; Sladek, V.; Sladek, J. 1994: Regularization techniques applied to boundary element methods. Appl. Mech. Rev. 47: 457–499

    Google Scholar 

  • Williams, M. L. 1959: The stress around a fault or crack in dissimilar media. Bull. Seism. Soc. Amer. 49: 199–204

    Google Scholar 

  • Xiao, F.; Hui, C. Y. 1994: A boundary element method for calculating the K field for cracks along a bimaterial interface. Comput. Mechanics 15: 58–78

    Google Scholar 

  • Yuuki, R.; Xu, J. Q. 1994: Boundary element method and its applications to the analyses of dissimilar materials and interface cracks. In: Nisitani, H. (ed.) Computational and experimental fracture mechanics, 61–90, CMP, Southampton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, 19 June 1995

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sladek, J., Sladek, V. Boundary element analysis for an interface crack between dissimilar elastoplastic materials. Computational Mechanics 16, 396–405 (1995). https://doi.org/10.1007/BF00370561

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00370561

Keywords

Navigation