Studia Logica

, Volume 51, Issue 2, pp 195–214 | Cite as

Quantified extensions of canonical propositional intermediate logics

  • Silvio Ghilardi
Article

Abstract

The quantified extension of a canonical prepositional intermediate logic is complete with respect to the generalization of Kripke semantics taking into consideration set-valued functors defined on a category.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. C. Chang, H. J. Keisler, Model theory, III ed. North Holland, 1990.Google Scholar
  2. [2]
    D. Gabbay, Semantical investigations in Heyting's intuitionistic logic, Reidel, 1981.Google Scholar
  3. [3]
    S. Ghilardi, Presheaf semantics and independence results for some non classical first order logics, Archive for Mathematical Logic 29 (1990), 125–136.Google Scholar
  4. [4]
    S. Ghilardi, Incompleteness results in Kripke semantics, Journal of Symbolic Logic, vol. 56, n.2 (1991) pp. 517–538.Google Scholar
  5. [5]
    S. Ghilardi, Modalità e categorie, tesi di dottorato in Matematica, Università degli Studi di Milano (1990).Google Scholar
  6. [6]
    S. Ghilardi, G. Meloni, Completezza per logiche intermedie, Atti degli incontri di logica matematica, vol.II, (1985) pp. 613–620, Università di Siena, Siena.Google Scholar
  7. [7]
    S. Ghilardi, G. Meloni, Modal and tense predicate logic: models in presheaves and categorical conceptualization, Springer LNM 1348, (1988) pp. 130–142.Google Scholar
  8. [8]
    S. Ghilardi, G. Meloni, Relational and topological semantics for temporal and modal predicative logic, Nuovi problemi della logica e della filosofia della scienza, vol. II, CLUEB, Bologna 1991, pp. 59–77.Google Scholar
  9. [9]
    M. Makkai, G. E. Reyes, First order categorical logic, Springer LNM 611, 1977.Google Scholar
  10. [10]
    H. Ono, Model extension theorem and Craig's interpolation theorem for intermediate predicate logics, Reports on mathematical logic 15, (1983) pp. 41–58.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Silvio Ghilardi
    • 1
  1. 1.Dipartimento di Matematica “F. Enriques”Università Degli Studi di Milano via CMilanoItaly

Personalised recommendations