Skip to main content
Log in

Reduction methods based on eigenvectors and Ritz vectors for nonlinear transient analysis

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Reduction methods using eigenvectors and Ritz vectors as basis vectors are empolyed to reduce the finite element nonlinear system of equations using a 48 D.O.F. doubly curved thin plate/shell element. With and without basis updating, the solutions obtained by reduction methods are compared with the direct solutions. It is observed that basis updating is essential to obtain accurate solutions. The present reduction methods need a large number of basis vectors (eigenvectors and Ritz vectors) to account for the impact load which has high frequency characteristics. Furthermore, for nonlinear analysis, the reduction achieved in the CPU time are only marginal since most of the CPU time was spent in the calculation of the internal nodal force vector. These considerations indicate that reduction methods may not be efficient for the impact response analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akay, H. U. (1980): Dynamic large deflection analysis of plates using mixed finite elements. Comput. and Struct. 11, 1–11

    Article  Google Scholar 

  • Almroth, B. O.; Stern, P.; Brogan, F. A. (1978): Automatic choice of global shape functions in structural analysis. AIAA J. 16, 525–528

    Google Scholar 

  • Bathe, K. J.; Gracewski, S. (1981): On nonlinear dynamic analysis using substructuring and mode superposition. Comput. and Struct. 13, 699–707

    Article  Google Scholar 

  • Bathe, K. J.; Ramm, E.; Wilson, E. L. (1975): Finite element formulations for large deformation dynamic analysis. Int. J. Numer. Methods Eng. 9, 353–386

    Google Scholar 

  • Bayles, D. J.; Lowery, R. L.; Boyd, D. E. (1973): Nonlinear vibrations of rectangular plates. ASCE, Journal of the Structural Division 99, 853–864

    Google Scholar 

  • Bayo, E. P.; Wilson, E. L. (1984): Use of Ritz vectors in wave propagation and foundation response. Earthquake Eng. and Structural Dynamics 12, 499–505

    Google Scholar 

  • Byun, C. (1991): Free vibration and nonlinear transient analysis of imperfect laminated structures. Ph.D. dissertation. Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

  • Camarda, C. J. (1990): Development of advanced modal methods for calculating transient thermal and structural response. Ph.D. dissertation. Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

  • Camarda, C. J.; Haftka, R. H.; Riley, M. F. (1987): An evaluation of higher-order modal methods for calculating transient structural response. Comput. and Struct. 27, 89–101

    Article  Google Scholar 

  • Chan, A. S. L.; Hsiao, K. M. (1985): Nonlinear analysis using a reduced number of variables. Comp. Meth. in Appl. Mech. and Eng. 52, 899–913

    Article  Google Scholar 

  • Chan, A. S. L.; Lau, T. B. (1987): Further development of the reduced basis method for geometric nonlinear analysis. Comp. Meth. in Appl. Mech. and Eng. 62, 127–144

    Article  Google Scholar 

  • Chang, C.; Engblom, J. J. (1991): Nonlinear dynamical response of impulsively loaded structures: A reduced basis approach. AIAA J. 29, 613–618

    Google Scholar 

  • Chang, P.; Haley, T. (1988): Computation of symmetry modes and exact reduction in nonlinear structural analysis. Comput. and Struct. 28, 135–142

    Article  Google Scholar 

  • Clough, R. W.; Wilson, E. L. (1979): Dynamic analysis of large structural systems with local nonlinearties. Comp. Meth. in Appl. Mech. and Eng. 17, 18, 107–129

    Article  Google Scholar 

  • Cornwell, R. E.; Graig, R. R., Jr.; Johnson, C. P. (1983): On the application of the mode-acceleration method to structural engineering problems. Earthquake Eng. and Structural Dyanmics 11, 679–688

    Google Scholar 

  • Das, S. K.; Uktu, S.; Wada, B. K. (1990): Use of reduced basis technique in the inverse dynamics of large space cranes. Computing Systems in Engineering 1, 577–589

    Article  Google Scholar 

  • Horri, K.; Kawahara, M. (1969): A numerical analysis on the dynamic response of structures. Proceedings of 19th Japan National Congress for Applied Mechanics, 1969, pp. 17–22.

  • Idelsohn, S. R.; Cardona, A. (1985a): A reduction method for nonlinear structural dynamic analysis. Comp. Meth. in Appl. Mech. and Eng. 49, 253–279

    Article  Google Scholar 

  • Idelsohn, S. R.; Cardona, A. (1985b): A load-dependent basis for reduced nonlinear structural dynamics. Comput. and Struct. 20, 203–210

    Article  Google Scholar 

  • Kapania, R. K.; Yang, T. Y. (1986): Formulation of an imperfect quadrilateral doubly-curved shell element for post-buckling analysis. AIAA J. 24, 310–311

    Google Scholar 

  • Kapania, R. K.; Yang, T. Y. (1987): Buckling, postbuckling, and nonlinear vibrations of imperfect plates. AIAA J. 25, 1338–1346

    Google Scholar 

  • Kline, K. A. (1986): Dynamic analysis using a reduced basis of exact modes and Ritz vectors. AIAA J. 24, 2022–2029

    Google Scholar 

  • Lanczos, C. (1950): An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal of Research of the National Bureau of Standards 45, 255–282

    Google Scholar 

  • Leung, Y. T. (1983): Fast response method for undamped structures. Eng. Struct. 5, 141–149

    Google Scholar 

  • McGowan, D. M.; Bostic, S. W. (1991): Comparison of advanced reduced-basis methods for transient structural analysis. Proc. of 32nd AIAA/ASME/ACE/AHS/ACE Structures, Structural Dynamics and Materials Conference. Baltimore, Maryland, 2523–2535

  • Moharz, B.; Elghadamsi, F. E.; Chang, C. (1991): An incremental mode superposition for nonlinear dynamic analysis. Earthquake Eng. and Structural Dynamics 20, 471–481

    Google Scholar 

  • Morris, N. F. (1977): The use of modal superposition in nonlinear dynamics. Comput. and Struct. 7, 65–72.

    Article  Google Scholar 

  • Nagy, D. A.; König, M. (1979): Geometrically nonlinear finite element behaviour using buckling mode superposition. Comp. Meth. in Appl. Mech. and Eng. 19, 447–484

    Article  Google Scholar 

  • Nickell, R. E. (1976): Nonlinear dynamics by mode superposition. Comp. Meth. in Appl. Mech. and Eng. 7, 107–129

    Google Scholar 

  • Noor, A. K.; Peters, J. M. (1980): Reduced basis technique for nonlinear analysis of structures. AIAA J. 18, 455–462

    Google Scholar 

  • Noor, A. K.; Anderson, C. M.; Peters, J. M. (1981a); Reduced basis technique for collapse analysis of shells. AIAA J 19, 393–397

    Google Scholar 

  • Noor, A. K. (1981b): Recent advances in reduction methods for nonlinear problems. Comput. and struct. 13, 31–44

    Article  Google Scholar 

  • Noor, A. K. (1982). On making large nonlinear problems small. Comp. Meth. in Appl. Mech. and Eng. 34, 955–985

    Article  Google Scholar 

  • Noor, A. K.; Peters, J. M. (1983): Instability analysis of space trusses. Comp. Meth. in Appl. Mech. and Eng. 40, 199–218

    Article  Google Scholar 

  • Nour-Omid, B.; Clough, R. W. (1984): Dynamic analysis of structures using Lanczos co-ordinates. Earthquake Eng. and Structural Dynamics 12, 565–577

    Google Scholar 

  • Przybylo, W. (1985): An application of the concept of the increasing series of the marcomodels (ISM) to the mechanics of the large discrete nonlinear systems. Proc. 1st Int. Conf. Advances in Numerical Methods in Engineering, NUMETA '85. Swansea, Wales, 253–262

  • Remesth, S. N. (1979): Nonlinear static and dynamic analysis of framed structures. Comput. and Struct. 10, 879–897

    Article  Google Scholar 

  • Safjan, A. (1988): Nonlinear structural analysis via reduced basis technique. Comput. and Struct. 29, 1055–1061

    Article  Google Scholar 

  • Safjan, A. (1990): Some advances in reduction methods for nonlinear structural statics. Comput. and Struct. 34, 753–763

    Article  Google Scholar 

  • Saigal, S.; Kapania, R. K.; Yang, T. Y. (1986): Geometrically nonlinear finite element analysis of imperfect Laminated shells. J. of Composite Materials 20, 197–214

    Google Scholar 

  • Saigal, S.; Yang, T. Y.; Kapania, R. K. (1987): Dynamic Buckling of imperfection sensitive shell structures. J. of Aircraft 24, 718–724

    Google Scholar 

  • Shah, V. N.; Bohm, G. J.; Nahavandi, A. N. (1979): Modal superposition method for computationally economical nonlinear structural analysis. J. of Pressure Vessel Technology 101, 134–141

    Google Scholar 

  • Wilson, E. L.; Yuan, M.-W.; Dickens, J. M. (1982): Dynamic analysis by direct superposition of Ritz vectors. Earthquake Eng. and Structural Dynamics 10, 813–821

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, May 4, 1992

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapania, R.K., Byun, C. Reduction methods based on eigenvectors and Ritz vectors for nonlinear transient analysis. Computational Mechanics 11, 65–82 (1993). https://doi.org/10.1007/BF00370072

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00370072

Keywords

Navigation