Skip to main content
Log in

Direct second kind boundary integral formulation for Stokes flow problems

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A direct boundary element method is formulated for the Stokes flow problem based on an integral equation representation for the components of traction. For problems in which the components of velocity are prescribed on the boundary of the domain, this new formulation results in a hypersingular Fredholm integral equation of the second kind. A method of regularization to evaluate the hypersingular integral is discussed. For certain problems involving flows about particles, the integral equation representation for the tractions is not unique because of the existence of rigid body eigenmodes. A method to constrain out these rigid body modes is also discussed. Several example problems are considered in which this new formulation is compared to more traditional boundary element formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ascoli, E. P.; Dandy, D. S.; Leal, L. G. (1989): Low Reynolds number hydrodynamic interaction of a solid particle with a planar wall. Int. J. Num. Meth. Fluids 9, 651–688

    Google Scholar 

  • Chan, C. Y.; Beris, A. N.; Advani, S. G. (1992): Second-order boundary element method calculations of hydrodynamic interactions between particles in close proximity. Int. J. Num. Meth. Fluids 14, 1063–1086

    Google Scholar 

  • Chandler, G. A.; Graham, I. G. (1988): Product integration-collocation methods for noncompact integral operator equations. Math. Comp. 50, 125–138

    Google Scholar 

  • Chien, C. C.; Rajiyah, H.; Atluri, S. N. (1990): On the evaluation of hypersingular integrals arising in the boundary element method for linear elasticity. Comp. Mech. 8, 57–70

    Google Scholar 

  • Costabel, M.; Ervin, V. J.; Stephen, E. P. (1988): On the convergence of collocation methods for Symm's integral equation on open curves. Math. Comp. 51, 167–179

    Google Scholar 

  • Giroir, J.; Nedelec, J. C. (1978): Numerical solution of an exterior Neumann problem using a double layer potential. Math. Comp. 32, 973–990

    Google Scholar 

  • Goldberg, M. A. (1978): Solution methods for integral equations: Theory and applications. New York: Plenum Press

    Google Scholar 

  • Goldman, A. J.; Cox, R. G.; Brenner, H. (1966): The slow motion of two identical arbitrarily oriented spheres through a viscous fluid. Chem. Eng. Sci. 21, 1151–1170

    Article  Google Scholar 

  • Golub, G. H.; Van Loan, C. F. (1983): Matrix computations. Baltimore: Johns Hopkins

    Google Scholar 

  • Günter, N. M. (1967): Potential theory and its applications to basic problems of mathematical physics, New York: Ungar

    Google Scholar 

  • Hadamard, J. (1952): Lectures of Cauchy's problem in linear partial differential equations. New York: Dover

    Google Scholar 

  • Higdon, J. J. L. (1985): Stokes flow in arbitrary two-dimensional domains: Shear flow over ridges and cavities. J. Fluid Mech. 159, 195–226

    Google Scholar 

  • Hsiao, G. C.; Koop, P.; Wendland, W. L. (1980): A Galerkin collocation method for some integral equations of the first kind. Computing 25, 89–130

    Google Scholar 

  • Ingber, M. S. (1989): Numerical simulation of the hydrodynamic interaction between a sedimenting particle and a neutrally buoyant particle. Int. J. Num. Meths. Fluids 9, 263–273

    Google Scholar 

  • Ingber, M. S. (1990): Dynamic simulation of the hydrodynamic interaction among immersed particles in Stokes flow. Int. J. Num. Meths. Fluids 10, 791–809

    Google Scholar 

  • Ingber, M. S.; Li, J. (1991): Surface pressure solutions for boundary-element analysis of Stokes flow. Comm. Appl. Num. Meths. 7, 367–376

    Google Scholar 

  • Ingber, M. S.; Mitra, A. K. (1989): The evaluation of the normal derivative along the boundary in the direct boundary element method. Appl. Math. Modelling 13, 32–40

    Article  Google Scholar 

  • Ingber, M. S.; Rudolphi, T. J. (1990): Solutions of potential problems using combinations of the regular and derivative bounday integral equations. Appl. Math. Modeling 14, 536–543

    Article  Google Scholar 

  • Karrila, S. J.; Fuentes, Y. O.; Kim, S. (1989): Parallel computational strategies for hydrodynamic interactions between rigid particles of arbitrary shape in a viscous fluid. J. Rheol. 33, 913–947

    Article  Google Scholar 

  • Karrila, S. J.; Kim, S. (1989): Integral equation of the second kind for Stokes flow: Direct solution for physical variables and removal of inherent accuracy limitation. Chem. Engrg. Comm. 82, 123–161

    Google Scholar 

  • Katz, C. (1987): Summary of boundary element panel discussion at BEM IX. Engrg. Anal. 4(4), 228

    Article  Google Scholar 

  • Kaya, A. C.; Erdogan, F. (1985): On the solution of integral equations with strongly singular kernels. Q. Appl. Math. 45(1), 105–122

    Google Scholar 

  • Kim, S.; Karrila, S. J. (1991): Microhydrodynamics: Principles and selected applications. Boston: Butterworth-Heinemann

    Google Scholar 

  • Kutt, H. R. (1975): The numerical evaluation of principal value integrals by finite-part integration. Numer. Math. 24, 205–210

    Article  PubMed  Google Scholar 

  • Ladyzhenskaya, O. (1963): The mathematical theory of viscous incompressible flow. New York: Gordon and Breach

    Google Scholar 

  • Martinez, M. J.; Udell, K. S. (1990): Axisymmetric creeping motion of drops through circular tubes. J. Fluid Mech. 210, 565–591

    Google Scholar 

  • Meyer, W. L.; Bell, W. A.; Zim, B. T.; Stallybrass, M. P. (1978): Boundary integral solutions of three dimensional acoustic radiation problems. J. Sound Vibr. 59(2), 245–262

    Article  Google Scholar 

  • Niessner, H. (1987): Significance of kernel singularities for the numerical solution of Fredholm integral equations. In: Brebbia C. A.; Wendland, W. L.; Kuhn, G. (eds): Boundary Elements IX, Vol. 1, pp. 213–227

  • Odqvist, F. K. G. (1930): Über dir Randwetaufgaben der hydrodynamic Zäber Flüssigkeitten, Math. Z. 32, 329–375

    Google Scholar 

  • O'Neill, M. E.; Majumdar, S. R. (1970): Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spheres. Part I: The determination of exact solutions for any values of the ratio of radii and separation parameters. Z. Angew. Math. Phys. 21, 165–179

    Google Scholar 

  • Pakdel, P.; Kim, S. (1991): Mobility and stresslet functions of particles with rough surfaces in viscous fluids: A numerical study. J. Rheol. 35(5), 797–823

    Article  Google Scholar 

  • Power, H.; Miranda, G. (1987): Second kind integral equation formulation of Stokes' flows past a particle of arbitrary shape. SIAM J. Appl. Math. 47(4), 689–698

    Google Scholar 

  • Rallison, J. M.; Acrivos, A. (1978): A numerical study of the deformation and burst of a viscous drop in an extensional flow. J. Fluid Mech. 89(1), 191–200

    Google Scholar 

  • Rezayat, M.; Shippy, D. J.; Rizzo, F. J. (1986): On time-harmonic elastic-wave analysis by the boundary element method for moderate to high frequencies. Comp. Meths. Appl. Mech. Engrg. 55, 349–367

    Article  Google Scholar 

  • Rudolphi, T. J. (1991): The use of simple solutions in the regularization of hypersingular boundary integral equations. Math. Comput. Modelling 15, 269–278

    Article  Google Scholar 

  • Stallybrass, M. P. (1967): On a pointwise variational principle for the approximate solution of linear boundary value problems. J. Math. Mech. 16, 1247–1286

    Google Scholar 

  • Stimson, M.; Jeffery, G. B. (1926): The motion of two spheres in a viscious fluid. Proc. R. Soc. A. 111, 110–116

    Google Scholar 

  • Stoer, J.; Bulirsch, R. (1980): Introduction to numerical analysis. Berlin: Springer

    Google Scholar 

  • Tran-Cong, T.; Phan-Thien, N. (1989): Stokes problems of multiparticle systems: a numerical method for arbitrary flows. Phys. Fluids A 1(3), 453–461

    Article  Google Scholar 

  • Vijayakumar, S.; Cormack, D. E. (1988): An invariant embedding method for singular integral evaluation on finite domains. SIAM J. Appl. Math. 48, 1335–1349

    Google Scholar 

  • Youngren, G. K.; Acrivos, A. (1975): Stokes flow past a particle of arbitrary shape: a numerical method of solution. J. Fluid Mech. 69(2), 377–403

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, July 6, 1992

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingber, M.S., Mondy, L.A. Direct second kind boundary integral formulation for Stokes flow problems. Computational Mechanics 11, 11–27 (1993). https://doi.org/10.1007/BF00370070

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00370070

Keywords

Navigation