Skip to main content
Log in

Completed double layer in half-space: a boundary element method

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The paper reports a numerical method for the solution of Stokes flows past a system of particles of arbitrary shape near a planar surface on which the velocity vector is zero. The method is an application of the Completed Double Layer Boundary Integral Method (CDL-BIEM) by Kim and Karrila [1]. It uses an iterative solver and therefore can handle a large number of particles with complex geometries. Particles' trajectories for a few typical problems are presented to illustrate the feasibility of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim S.; KarrilaS. J. (1991): Microhydrodynamics: Principles and Selected Applications. Boston: Butterworth-Heinemann

    Google Scholar 

  2. Fichera, G. (1961): Proc. Conf. P.D.E. and Continuum Mechanics. 55–80

  3. Rizzo F. J. (1967): J. Appl. Math., 25, 83–95

    Google Scholar 

  4. Hess J. L.; SmithA. M. O. (1967): Prog. in Aeronautical Sciences. D.Kucheman (Ed.), London: Pergamon 1–138

    Google Scholar 

  5. Banerjee, P. K.; Butterfield, R.: Boundary Element Methods in Engineering Science, London: McGraw Hill

  6. Brebbia C. A.; TellesJ. C. F.; WrobelL. C. (1984): Boundary Element Techniques: Theory and Applications in Engineering. Berlin: Springer-Verlag

    Google Scholar 

  7. Youngren G. K.; AcrivosA. (1975): J. Fluid Mech. 69, 377–403

    Google Scholar 

  8. Bush M. B.; TannerR. I. (1983): Int. J. Numer. Meth. Fluids 3, 71–92

    Google Scholar 

  9. Onishi K.; KurokiT.; TanakaM. (1984): Eng. Anal. 1, 122–127

    Google Scholar 

  10. Bush M. B.; TannerR. I. (1990): Boundary Element Methods in Nonlinear Fluid Dynamics, Vol. 6, 285–317. Eds. P. K.Banerjee and J.Morino, New York: Elsevier Applied Science

    Google Scholar 

  11. Telles J. C. F.; BrebbiaC. A. (1981): Int. J. Solids Struct. 17, 1149–1158

    Google Scholar 

  12. Tran-Cong T.; Phan-ThienN. (1986): Computational Mech. 1, 259–268

    Google Scholar 

  13. Ascoli E. P.; DandyD. S.; LealL. G. (1989): Int. J. Numer. Meths. Fluids 9, 651–688

    Google Scholar 

  14. Mindlin R. D. (1936): Physics 7, 195–202

    Google Scholar 

  15. Phan-Thien N. (1983): J. Elasticity 13, 231–235

    Google Scholar 

  16. Tran-Cong T.; Phan-ThienN. (1989): Phys. Fluids A 1, 453–461

    Google Scholar 

  17. Tran-Cong T.; Phan-ThienN.; GrahamA. L. (1990): Phys. Fluids A 2, 666–673

    Google Scholar 

  18. Vincent J.; Phan-ThienN.; Tran-CongT. (1991): J. Rheology 35, 1–27

    Google Scholar 

  19. Ingber M. S. (1989): Int. J. Num. Method. Fluids 9, 263–273

    Google Scholar 

  20. Ingber M. S. (1990): Int. J. Num. Method. Fluids 10, 791–809

    Google Scholar 

  21. Power H.; MirandaG. (1987): SIAM J. Appl. Math. 47, 689–698

    Google Scholar 

  22. Karrila S. J.; FuentesY. O.: KimS. (1989): J. Rheology 33, 913–947

    Google Scholar 

  23. Karrila S. J.; KimS. (1989): Chem. Eng. Comm. 82, 123–161

    Google Scholar 

  24. Karrila S. J.; FuentesY. O.; KimS. (1989): J. Rheology 33, 913–947

    Google Scholar 

  25. Pakdel P.; KimS. (1991): J. Rheology 35, 797–823

    Google Scholar 

  26. Mazur P.; vanSaarloosW. (1982): Physica A 115, 21–57

    Google Scholar 

  27. Mazur P. (1985): Can J. Phys. 63, 24–29

    Google Scholar 

  28. Durlofsky L.; BradyJ. F.; BossisG. (1987): J. Fluid Mech. 180, 21–49

    Google Scholar 

  29. Brady J. F.; BossisG. (1988): Ann. Rev. Fluid Mech. 20, 111–157

    Google Scholar 

  30. Happel J.; BrennerH. (1983): Low Reynolds Number Hydrodynamics, Dordrecht, The Netherlands: Martinus Nijhoff Publishers

    Google Scholar 

  31. Lee S. H.; LealL. G. (1980): J. Fluid Mech. 98, 193–224

    Google Scholar 

  32. Caflisch R. E.; LimC.; LukeJ. H. C.; SanganiA. S. (1988): Phys. Fluids 31, 3175–3179

    Google Scholar 

  33. Blake J. R. (1971): Proc. Camb. Phil. Soc. 70, 303–310

    Google Scholar 

  34. Hasimoto H.; SanoO. (1980): Ann. Rev. Fluid Mech. 12, 335–363

    Google Scholar 

  35. Phan-Thien N. (1983): J. Elasticity 13, 231–235

    Google Scholar 

  36. Odqvist F. K. G. (1930): Math. Z. 32, 329–375

    Google Scholar 

  37. Xijun, F.; Yeow, Y. L. (1991): preprint

  38. Ramkrishna D.; AmundsonN. R. (1985): Linear Operator Methods in Chemical Engineering, Englewood Cliffs, New Jersey: Prentice-Hall

    Google Scholar 

  39. Bathe K.-J. (1982): Finite Element Procedures in Engineering Analysis, Englewood Cliffs, New Jersey: Prentice-Hall

    Google Scholar 

  40. Dingman, S.; Ingber, M. S.; Mondy, L.; Abbott, J. (1991): preprint

  41. Fuentes, Y. O.; Kim, S. (1991). Rheology Research Report RRC 127, University of Wisconsin-Madison

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. I. Tanner, August 5, 1991

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phan-Thien, N., Tullock, D. & Kim, S. Completed double layer in half-space: a boundary element method. Computational Mechanics 9, 121–135 (1992). https://doi.org/10.1007/BF00370067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00370067

Keywords

Navigation