Skip to main content
Log in

A model with length scales for composites with periodic structure. Steady state heat conduction problem

Part I. Formulation

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A new high-order model for analysing distribution of temperature in periodic composites is proposed. The original scalar elliptic problem with εY-periodic coefficients (Y is a cube) is replaced with a vectorial elliptic problem of constant coefficients. The unknown fields are: the averaged distribution of temperature θ and the vector field φ which stands for perturbation of the temperature within the cells of periodicity. The recovery of temperature in the original composite is given by the approximation: 0ε(x)=0(x) +h a (x/ε)ϕ a (x) analogous with the first terms of the two-scale asymptotic expansion known from the homogenization theory. The functions h α are defined as approximations of the solutions to the basic cell problems. In contrast to the two-scale expansion the expression for θε satisfies the boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboudi, J. (1985): The effective thermomechanical behaviour of inelastic fiber-reinforced materials. Int. J. Eng. Sci. 23, 773–787

    Google Scholar 

  • Bakhvalov, N. S.; Panasenko, G. P. (1984): Processes averaging in periodic media (in Russian), Moscow; Nauka

    Google Scholar 

  • Barański, W. S.; Gajl O. (1987): A convergent model of nonlinearly elastic periodic composites. In: Green, E.; Mičunovič, M. (eds.): Mechanical behaviour of composite materials and laminates, pp. 167–174. Amsterdam: Elsevier

    Google Scholar 

  • Ben-Amoz, M. (1976): Heat conduction theory for composite materials. ZAMP. 27, 335–345

    Google Scholar 

  • Bensoussan, A.; Lions, J.-L.; Papanicolaou, G. (1978). Asymptotic analysis for periodic structures. Amsterdam: North Holland

    Google Scholar 

  • Bourgat, J. F. (1978): Numerical experiments of the homogenization method for operators with periodic coefficients. Rapport de Recherche. No. 277. I.R.I.A. Rocquencourt

  • Bourgat, J. F.; Dervieux, A. (1978): Methode de homogénéisation des operatures à coefficients périodiques: étude des correcteurs provenant du développement asymptotique. Rapport de Recherche No. 278, I.R.I.A. Rocquencourt

  • Ciarlet, Ph. (1978): The finite element method for elliptic problems. Amsterdam: North Holland

    Google Scholar 

  • Duvaut, G. (1976): Analyse fonctionelle et mécanique des milieux continue. Application à l'étude des matériaux composites élastiques a structure périodique-homogénéisation. In: Koiter, W. T. (ed.): Theoretical and Applied Mechanics, Proc. 14th IUTAM Congress. Delft. 30 August–4 September, pp. 119–132. Amsterdam: North Holland

    Google Scholar 

  • Francfort, G. (1983): Homogenization and linear thermoelasticity. SIAM J. Math. Anal. 14, 696–708

    Google Scholar 

  • Gurtin, M. E. (1972): The linear theory of elasticity, In: C. Truesdell (ed.): Handbuch der Physik vol. VIa/2, Berlin, Heidelberg, New York, 1–296

  • Kohn, R. V.; Milton, G. W. (1986): On bounding the effective conductivity of anisotropic composites. In: Ericksen, J.: Kinderlehrer, D.; Kohn, R. V.; Lions, J. L. (eds.): Homogenization and effective moduli of materials and media. Berlin, Heidelberg, New York: Springer 97–116

    Google Scholar 

  • Kunin, I. A. (1975): Theory of elastic media with microstructure. (in Russian) Moscow: Nauka

    Google Scholar 

  • Lewiński, T. (1984a): Two versions of Woźniak's continuum model of hexagonal-type grid plates, Mech. Teoret. Stos. 22, 389–405

    Google Scholar 

  • Lewiński, T. (1984b): Differential models of hexagonal-type grid plates, Mech. Teoret. Stos. 22, 407–421

    Google Scholar 

  • Lewiński,T. (1985): Physical correctness of Cosserat-type models of honeycomb grid plates, Mech. Teoret. Stos. 23, 53–69

    Google Scholar 

  • Lewiński, T. (1991). Effective models of composite periodic plates. Part I. Asymptotic solution. Int. J. Solids Struct. 27, 1155–1172. Part II. Simplifications due to symmetries. ibid. 1173–1184. Part III. Two-dimensional approaches. ibid. 1185–1203

    Google Scholar 

  • Maewal, A. (1986): Construction of models of dispersive elastodynamic behaviour of periodic composites: a computational approach. Comp. Meth. Appl. Mech. Eng. 57, 191–205

    Google Scholar 

  • Maewal, A.; Gurtman, G. A.; Hegemier,G. A. (1978): A mixture theory for quasi-one dimensional diffusion in fiber-reinforced composites. ASME J. Heat Trans. 100, 128–133

    Google Scholar 

  • Milton, G. W.; Kohn,R. V. (1988): Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids. 36, 597–629

    Google Scholar 

  • Mindlin, R. D. (1964): Microstructure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78

    Google Scholar 

  • Morrey, C. B. Jr. (1954): Second order elliptic systems of differential equations. Ann. of Math. Studies. No 33, Princeton Univ. Press, 101–159

  • Murakami, H.; Hegemier, G. A. (1986): A mixture model for unidirectionally fiber-reinforced composites. ASME J. Appl. Mech. 53, 765–773

    Google Scholar 

  • Murakami, H.; Hegemier, G. A.; Maewal, A. (1978): Mixture theory for thermal diffusion in unidirectional composites with cylindrical fibers of arbitrary cross section. Int. J. Solids Struct. 14, 723–737

    Google Scholar 

  • Nayfeh, A. H. (1977): Thermomechanically induced interfacial stresses in fibrous composites. Fiber Sci. Tech. 10, 195–209

    Google Scholar 

  • Nunziato, J. W.; Cowin, S. C. (1979): A non-linear theory of elastic materials with voids. Arch. Rat. Mech. Anal. 72, 175–201

    Google Scholar 

  • Sanchez-Palencia, E. (1980): Non-homogeneous media and vibration theory. Lecture Notes in Physics, vol. 127, Berlin: Springer, Heidelberg, New York

    Google Scholar 

  • Suquet, P. (1982): Une methode duale en homogéneisation: application aux milieux élastiques. J. Méc. théor. appl. Numero spécial, 79–98

  • Toledano, A.; Murakami, H. (1987): A high-order mixture model for periodic particulate composites. Int. J. Solids Struct. 23, 989–1002

    Google Scholar 

  • Woźniak, Cz. (1967): Thermoelasticity of the bodies with microstructure. Arch. Mech. 19, 335–365

    Google Scholar 

  • Woźniak, Cz. (1969): Foundations of dynamics of deformable bodies (in Polish). Warsaw: Polish Sci. Publ.

    Google Scholar 

  • Woźniak, Cz. (1987): A nonstandard method of modelling of thermoelastic periodic composites, Int. J. Eng. Sci. 25, 483–498

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Kleiber, September 6, 1991

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewiński, T., Kucharski, S. A model with length scales for composites with periodic structure. Steady state heat conduction problem. Computational Mechanics 9, 249–265 (1992). https://doi.org/10.1007/BF00370034

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00370034

Keywords

Navigation