Skip to main content
Log in

Human adenovirus type 5 variants with sequence alterations flanking the E2A gene: Effects on E2 expression and DNA replication

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The human adenovirus type 5 (Ad5) E2 transcription unit is divided into a promoter-proximal region, E2A, and a distal region, E2B, each with its own polyadenylation site. Together these regions encode the three virus-derived proteins necessary for genome replication. Ad5 variants were produced that carried linker insertion mutations immediately 5′ and/or 3′ to the coding sequence for the E2A gene DNA binding protein (DBP). Two variants carrying solely a 5′ lesion showed decreased usage of the adjacent 3′ splice site, via which the DBP mRNA is produced, and an increased usage of the alternative downstream splice sites in the E2B region, wherein viral DNA polymerase and terminal protein precursor are encoded; these viruses showed somewhat reduced growth. A variant carrying a 3′ lesion showed a marginal increase in DBP expression and slightly accelerated growth. When lesions 5′ and 3′ to the DBP coding sequence were combined in cis, the resulting virus was severely defective for growth and expressed E2B products to the virtual exclusion of E2A DBP. These data indicate that interactions must occur between the E2A 3′ splice site and polyadenylation site before this region can be treated as an exon by the RNA processing machinery, and that a sequence alteration at the polyadenylation site that alone has only minor effects on the pattern of RNA processing can drastically affect terminal exon usage when placed in cis with a mutation that reduces splicing efficiency at the upstream 3′ splice site. The data further indicate that, in vivo, Ad5 DNA replication is limited by prevailing DBP levels rather than by levels of polymerase or terminal protein precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HorwitzM.S. in FieldsB.N. and KnipeD.M. (eds.) Virology, Vol. 2, 2nd ed. Raven Press, New York, 1990, pp 1679–1721.

    Google Scholar 

  2. ChallbergM.D. and KellyT.J., Annu Rev Biochem 58, 671–717, 1989.

    Google Scholar 

  3. StillmanB., Annu Rev Cell Biol 5, 197–245, 1989.

    Google Scholar 

  4. TemperleyS.M. and HayR.T., EMBO J 11, 761–768, 1992.

    Google Scholar 

  5. NagataK., GuggenheimerR.A., EnomotoJ., LichyH., and HurwitzJ., Proc Natl Acad Sci USA 79, 6438–6442, 1982.

    Google Scholar 

  6. RosenfeldP., O'NeillE.A., WidesR.J., and KellyT.J., Mol Cell Biol 7, 875–886, 1987.

    Google Scholar 

  7. CleatP.H. and HayR.T., EMBO J 8, 1841–1848, 1989.

    Google Scholar 

  8. StuiverM.H. and van derVlietP.C., J Virol 64, 379–386, 1990.

    Google Scholar 

  9. BosherJ., RobinsonE.C., and HayR.T., New Biol 2, 1083–1090, 1990.

    Google Scholar 

  10. ChenM., MermodN., and HorwitzM.S., J Biol Chem 265, 18634–18642, 1990.

    Google Scholar 

  11. MulY.M. and van derVlietP.C., EMBO J 11, 751–760, 1992.

    Google Scholar 

  12. GrahamF.L., SmileyJ., RussellW.C., and NairnR., J Gen Virol 36, 59–72, 1977.

    Google Scholar 

  13. PilderS., MooreM., LoganJ., and ShenkT., Mol Cell Biol 6, 470–476, 1986.

    Google Scholar 

  14. JonesN.C. and ShenkT., Cell 17, 683–689, 1979.

    Google Scholar 

  15. MeltonD.A., KriegP.A., RebagliatiM.R., ManiatisT., ZinnK., and GreenM.R., Nucleic Acids Res 12, 7035–7056, 1984.

    Google Scholar 

  16. LeppardK.N. and ShenkT., EMBO J 8, 2329–2336, 1989.

    Google Scholar 

  17. LeppardK.N., J Gen Virol 74, 575–582, 1993.

    Google Scholar 

  18. ChroboczekJ., BieberF., and JacrotB., Virology 186, 280–285, 1992.

    Google Scholar 

  19. CaravokyriC., PringleC.R., and LeppardK.N., J Gen Virol 74, 2819–2824, 1993.

    Google Scholar 

  20. ImperialeM., FeldmanL.T., and NevinsJ.R., Cell 35, 127–1 36, 1983.

    Google Scholar 

  21. CaravokyriC. and PringleC.R., Virus Genes 6, 53–62, 1992.

    Google Scholar 

  22. GreenM.R., Annu Rev Cell Biol 7, 559–599, 1991.

    Google Scholar 

  23. KruijerW., vanSchaikF.M.A., and SussenbachJ.S., Nucleic Acids Res 9, 4439–4457, 1981.

    Google Scholar 

  24. ReichN.C., SarnowP., DupreyE., and LevineA.J., Virology 128, 480–484, 1983.

    Google Scholar 

  25. HemstromC., NordkvistK., PetterssonU., and VirtanenA., J Virol 62, 3258–3264, 1988.

    Google Scholar 

  26. MorinN., DelsertC., and KlessigD.F., J Virol 63, 5228–5237, 1989.

    Google Scholar 

  27. CleghornV.G., VoelkerdingK., MorinN., DelsertC., and KlessigD.F., J Virol 63, 2289–2299, 1989.

    Google Scholar 

  28. ChangL.-S. and ShenkT., J Virol 64, 2103–2109, 1990.

    Google Scholar 

  29. SeibergM., KesslerM., AloniY., and LevineA.J., Virus Genes 1, 97–116, 1987.

    Google Scholar 

  30. SeibergM., AloniY., and LevineA.J., J Virol 63, 1134–1141, 1989.

    Google Scholar 

  31. MountS.M., Nucleic Acids Res 10, 459–472, 1982.

    Google Scholar 

  32. WieringaB., HoferE., and WeissmanC., Cell 37, 915–925, 1984.

    Google Scholar 

  33. vanSantenV.L. and SpritzR.A., Proc Natl Acad Sci USA 82, 2885–2889, 1985.

    Google Scholar 

  34. RuskinB. and GreenM.R., Nature, 317, 732–734, 1985.

    Google Scholar 

  35. DeZazzoJ.D. and ImperialeM.J., Mol Cell Biol 9, 4951–4961, 1989.

    Google Scholar 

  36. CarswellS. and AlwineJ.C., Mol Cell Biol 9, 4248–4258, 1989.

    Google Scholar 

  37. RussnakR. and GanemD., Genes Dev 4, 764–776, 1990.

    Google Scholar 

  38. ValsamakisA., ZeichnerS., CarswellS., and AlwineJ.C., Proc Natl Acad Sci USA 88, 2108–2112, 1991.

    Google Scholar 

  39. McDevittM.A., ImperialeM.J., AliH., and NevinsJ.R., Cell 37, 993–999, 1984.

    Google Scholar 

  40. HartR.P., McDevittM.A., AliH., and NevinsJ.R., Mol Cell Biol 5, 2975–2983, 1985.

    Google Scholar 

  41. HuangM.T.F. and GormanC.M., Nucleic Acids Res 18, 937–947, 1990.

    Google Scholar 

  42. ChiouH.C., DabrowskiC., and AlwineJ.C., J Virol 65, 6677–6685, 1991.

    Google Scholar 

  43. RobbersonB.L., CoteG.J., and BergetS.M., Mol Cell Biol 10, 84–94, 1990.

    Google Scholar 

  44. NiwaM., RoseS.D., and BergetS.M., Genes Dev 4, 1552–1559, 1990.

    Google Scholar 

  45. NiwaM. and BergetS.M., Genes Dev 5, 2086–2095, 1991.

    Google Scholar 

  46. McLauchlanJ., GaffneyG., WhittonJ.L., and ClementsJ.B., Nucleic Acids Res 13, 1347–1368, 1985.

    Google Scholar 

  47. GilA. and ProudfootN.J., Cell 49, 399–406, 1987.

    Google Scholar 

  48. GilmartinG.M., McDevittM.A., and NevinsJ.R., Genes Dev 2, 578–587, 1988.

    Google Scholar 

  49. PrescottJ.C. and Falk-PedersenE., J Biol Chem 267, 8175–8181, 1992.

    Google Scholar 

  50. MooreC.L., Skolni-DavidH., and SharpP.A., EMBO J 5, 1929–1938, 1986.

    Google Scholar 

  51. MasonP.J., ElkingtonJ.A., LloydM.M., JonesM.B. and WilliamsJ.G., Cell 46, 263–270, 1986.

    Google Scholar 

  52. BrownP.H., TileyL.S., and CullenB.R., Genes Dev 5, 1277–1284, 1991.

    Google Scholar 

  53. CepkoC.L. and SharpP.A., Cell 31, 407–415, 1982.

    Google Scholar 

  54. CepkoC.L. and SharpP.A., Virology 129, 137–154, 1983.

    Google Scholar 

  55. BroughD.E., DroguettG., HorwitzM.S., and KlessigD.F., Virology 196, 269–281, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caravokyri, C., Leppard, K.N. Human adenovirus type 5 variants with sequence alterations flanking the E2A gene: Effects on E2 expression and DNA replication. Virus Genes 12, 65–75 (1996). https://doi.org/10.1007/BF00370002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00370002

Key words

Navigation