Skip to main content
Log in

Turbulent breakage of protein precipitates in mechanically stirred bioreactors

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Experimental data relating to the breakage of isoelectric Soya protein precipitates in a mechanically agitated bioreactor are provided and examined in the light of a proposed mechanistic model which relates the size of the maximum attainable aggregate diameter to the energy dissipation rate in the vessel. The analysis suggests that protein precipitation results in the formation of scale-invariant fractal aggregates with a dimensionality of 2.2. Comparing the fractal dimensionality of the protein precipitates with reported values based on computer simulation studies suggests that the aggregates undergo considerable restructuring during agitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Hamaker constant (J)

D :

impeller diameter (m)

d p :

primary particle diameter (m)

d f :

maximum aggregate diameter (m)

G :

shear rate (s–1)

H 0 :

separation distance between two primary particles (m)

k :

constant in Eq. (5)

K :

constant in Eq. (6)

N :

impeller speed (rpm or rps)

r :

radial position in an aggregate, measured from the centre (m)

t :

time of exposure to shear (mins)

T e :

eddy period (s–1)

v f :

aggregate volume (m3)

β :

aggregate dimensionality constant

ɛ :

energy dissipation rate (W/kg)

μ :

dynamic viscosity of particle-free liquid (kg/ms)

ν :

kinematic viscosity of particle-free liquid (m2/s)

ξ :

collision probability (−)

ρ p :

aggregate density (kg/m3)

ρ p :

continuous phase density (kg/m3)

σ :

aggregate mechanical strength (N/m2)

τ :

shear stress (N/m2)

φ :

particle concentration in an aggregate (m3/m3)

Ψ(r) :

porosity at radial position, r

References

  1. Ayazi Shamlou, P.; Titchener-Hooker, N.: Turbulent aggregation and breakup of particles in stirred vessels, in “Processing of Solid-Liquid Suspensions”, Ayazi Shamlou (Ed.), Butterworth Heinmann (Pub.), (1993) 1–26

  2. Ayazi Shamlou, P.; Jones, A.G.; Djamarani, K.: Hydrodynamics of secondary nucleation in suspension crystallization, Chem. Engng Sci., 45 (1990) 1405–1416

    Google Scholar 

  3. Ayazi Shamlou, P.; Stavrinides, S.; Titchener-Hooker, N.; Hoare, M.: Growth-independent breakage frequency of protein precipitates in turbulently agitated bioreactors, Chem. Engng Sci., 49 (1994a) 2647–2656

    Google Scholar 

  4. Ayazi Shamlou, P.; Gierczycki, A.T.; Titchener-Hooker, N: Breakage of flocs in liquid suspensions agitated by vibrating and rotating mixers, AIChE J. (1995) (submitted)

  5. Ayazi Shamlou, P.; Makagiansar, H.Y.; Ison, A.P.; Lilly, M.D.: Turbulent breakage of filamentous microorganisms in submerged culture in mechanically stirred bioreactors, Chem. Engng Sci., 49 (1994b) 2621–2631

    Google Scholar 

  6. Bell, D.J.; Dunnill, P.: Shear disruption of Soya protein precipitate particles and the effect of ageing in a stirred tank, Biotech. Bioengng., XXIV (1982a) 2271–1285

    Google Scholar 

  7. Bell, D.J.; Dunnill, P.: The influence of precipitation reactor configuration of the centrifugal recovery of isoelectric Soya protein precipitate, Biotech. Bioengng., XXIV (1982b) 2319–2336

    Google Scholar 

  8. Bell, A.J.; Hoare, M.; Dunnill, P.: The formation of protein precipitates and their centrifugal recovery, Advances in Biochem. Engng/Biotech., 26 (1983) 1–72

    Google Scholar 

  9. Brown, D.L.; Glatz, C.E.: Aggregate breakage in protein precipitation, Chem. Engng Sci., 42 (1987) 1831–1839

    Google Scholar 

  10. Cherry, R.S.; Papoutsakis, E.T.: Growth and death rates of bovine embryonic kidney cells in turbulent microcarrier bioreactor, Bioprocess Engng., 4 (1989) 81–89

    Google Scholar 

  11. Davies, J.T.: A physical interpretation of drop sizes in homogenizers and agitated tanks, including the dispersion of viscous oils, Chem. Engng Sci., 7 (1987) 1671–1976. Davies, J.T., Turbulence Phenomena, Academic Press, New York, 1972

    Google Scholar 

  12. Devereux, N.; Hoare, M.; Dunnill, P.: The development of improved methods for the initial recovery of protein precipitates, in “Solid-liquid Separation” Gregory, J., Society of Chem. Ind., Ellis Horwood (Pub.), (1984) 143–160

  13. Family, F.; Landau, D.P. (eds): Kinetics of aggregation and gelation, North-Holland (Pub.), (1984) The Netherlands

    Google Scholar 

  14. Fisher, R.R.; Glatz, C.E.: Polyelectrolyte precipitation of proteins: I. The effect of reactor conditions, Biotech. Bioengng., 32 (1988a) 777–785

    Google Scholar 

  15. Fisher, R.R.; Glatz, C.E.: Polyelectrolyte precipitation of proteins: II. Models of the particle size distributions, Biotech. Bioengng., 32 (1988b) 786–796

    Google Scholar 

  16. Glasgow, L.A.; Luecke, R.H.: Mechanisms of deaggregation for claypolymer flocs in turbulent systems, Ind. Engng. Chem. Fundam., 19 (1980) 148–156

    Google Scholar 

  17. Glatz, C.E.; Hoare, M.; Landa-Vertiz, J.: The formation and growth of protein precipitates in a continuous stirred-tank reactor, AIChE J., 32 (1986) 1196–1204

    Google Scholar 

  18. Hoare, M.: Protein precipitation and precipitate ageing, Part I: Salting-out and ageing of casein precipitates, Trans. IChemE, 60 (1982a) 79–87

    Google Scholar 

  19. Hoare, M.: Growth of protein precipitates during hindered settling or exposure to shear, Trans IChemE, 60 (1982b) 157–163

    Google Scholar 

  20. Hoare, M.; Bell, D.J.; Dunnill, P.: Process design for the recovery of food proteins by precipitation and centrifugation, Engng and Food, 2 (1984) Elsevier Applied Sci. (Pub.), NY, 691–700

  21. Hoare, M.; Dunnill, P.: Protein processing — the immediate challenge, The Chemical Engineer, December (1986a) 23–25

  22. Hoare, M.; Dunnill, P.: Protein processing — new prospects, The Chemical Engineer, December, 39–41

  23. Hoare, M.; Dunnill, P.: Biochemical Engineering challenges of purifying useful proteins, Phil. Trans. R. Soc. Lond. B 324 (1989) 497–507

    Google Scholar 

  24. Hoare, M.; Narendranathan, T.J.; Flint, J.R.; Heywood-Waddington, D.; Bell, D.J.; Dunnill, P.: Disruption of protein precipitates during shear in Couette flow and in pumps, Ind. Engng Chem. Fundam., 21 (1982) 402–406

    Google Scholar 

  25. Karuhn, R.F.; Berg, R.M.: The electrical sensing zone technique for particle size measurement, Particle Data Labs Ltd., (1982) Elmhurst, IL

    Google Scholar 

  26. Levins, D.M.; Glastonbury, J.R.: Particle-liquid hydrodynamics and mass transfer in a stirred vessel, Part I — Particle-liquid motion, Trans. Instn Chem. Engnrs., 50 (1972a) 32–40

    Google Scholar 

  27. Levich, V.G.: Physiochemical Hydrodynamics, Prentice-Hall, NY (1962)

    Google Scholar 

  28. Levins, D.M.; Glastonbury, J.R.: Application of Kolmogoroffs theory to particle-liquid mass transfer in agitated vessels, Chem. Engng. Sci., 27 (1972b) 537–543

    Google Scholar 

  29. Parker, D.S.; Warren, A.M.; Kaufman, J.; Jenkins, D.: Floc breakup in turbulent flocculation processes, J. San. Engng Div., Proc. Am. Soc. Civ. Engrs, SA1, 79–98

  30. Petenate, A.M.; Glatz, C.E.: Isoelectric precipitation of Soya protein: I Factors affecting particle size distribution, Biotech. Bioengng., XXV (1983) 3049–3058

    Google Scholar 

  31. Rumpf, H.: in Agglomeration, Knepper, W.A. (Ed.), Wiley (Pub.), NY (1962)

    Google Scholar 

  32. Sonntag, R.C.; Russel, W.B.: Structure and breakup of flocs subjected to fluid stress, I, Shear experiments, J. Coll. Interface Sci., 113 (1986) 399–413

    Google Scholar 

  33. Sonntag, R.C.; Russell, W.B.: Structure and breakup of flocs subjected to fluid stresses, II, Theory, J. Coll. Interface Sci., 115 (1987) 378–389

    Google Scholar 

  34. Stavrinides, S.; Ayazi Shamlou, P.; Hoare, M.: Effects of engineering parameters on the precipitation, recovery and purification of proteins, in “Processing of Solid-Liquid Suspensions”, Ayazi Shamlou (Ed.), Butterworth Heinmann (Pub.), (1993) 118–158

  35. Stavrinides: The breakage of Soya protein precipitates in mechanically stirred vessels, PhD thesis, University of London

  36. Titchener-Hooker, N.J.; Hoare, M.; Dunnill, P.: New approaches to the more efficient purification of proteins and enzymes, Biochem. Engng 6, Annals NY Acad. Sci., 589 (1990) 157–171

    Google Scholar 

  37. Titchener-Hooker, N.J.; Hoare, M.; McIntosh, R.V.; Foster, P.R.: The effect of fluid-jet mixing on protein precipitate growth during low-frequency conditioning. Chem. Engng Sci., 47 (1992) 75–86

    Google Scholar 

  38. Tomi, D.T.; Bagster, D.F.: The behaviour of aggregates in stirred vessels, Trans. IChemE, 56 (1978) 1–7

    Google Scholar 

  39. Tambo, N.; Hozumi, H.: Physical characteristics of flocs — II. Strength of floc, Water Research, 13 (1979) 421–427

    Google Scholar 

  40. Twineham, M.; Hoare, M.; Bell, D.J.: The effect of protein concentration on the break-up of protein precipitate by exposure to shear, Chem. Engng Sci., 39 (1984) 509–513

    Google Scholar 

  41. van Suijdam, J.C.; Metz, B.: Fungal pellet breakup as a function of shear in a fermenter, Ferment. Technol., 59 (1981) 329–333

    Google Scholar 

  42. Virkar, P.D.; Hoare, M.; Chan, M.Y.Y.; Dunnill, P.: Kinetics of the acid precipitation of Soya protein in a continuous-flow tubular reactor, Biotech. Bioengng, XXIV, (1982) 871–887

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayazi Shamlou, P., Stavrinides, S., Titchener-Hooker, N. et al. Turbulent breakage of protein precipitates in mechanically stirred bioreactors. Bioprocess Engineering 14, 237–243 (1996). https://doi.org/10.1007/BF00369919

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369919

Keywords

Navigation