Skip to main content
Log in

Ethanol production in an integrated fermentation/membrane system. Process simulations and economics

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Four systems comprising of an ethanol fermentation integrated with microfiltration and/or pervaporation, and a conventional continuous culture, were compared with respect to the performance of the fermentation and economics. The processes are compared on the basis of the same kinetic model. It is found that cell retention by microfiltration leads to lower production costs, compared to a conventional continuous culture. Pervaporation becomes profitable at a high selectivity of ethanol/water separation and low membrane prices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A m2 :

area

C kg m−3 :

concentration

C s0 kg m−3 :

feed substrate concentration, i.e. substrate conversion

C′ pp kg m−3 :

concentration of ethanol in pervaporate in configuration V

d m:

diameter

D h−1 :

dilution rate

F kg h−1 :

flow rate

F prod kg h−1 :

capacity of the plant

f :

fraction of ethanol removed from recirculation stream

J m3 m−2 h−1 :

membrane flux

m s kg kg−1 h−1 :

maintenance coefficient

Q PV kJ h−1 :

heat required for pervaporation

r kg m−3 h−1 :

production or consumption rate

S :

selectivity

T °C:

temperature

U Wm−2 °C−1 :

overall heat transfer coefficient

V m3 :

volume

x :

mass fraction

Y sp kg kg−1 :

yield of product on substrate

Y sx kg kg−1 :

yield of biomass on substrate

μ h−1 :

specific growth rate

ϱ kg m−3 :

density

ac :

acetic acid

c :

recirculation stream

C.B.:

cell bleed

cond (C):

condensor

dist :

distillation column

F :

feed

HE :

heat exchanger

in (0):

inlet

m :

medium (filtrate)

M.B.:

medium bleed

max:

maximal

MF :

microfiltration

p :

product

pp :

product in pervaporate

PV :

pervaporation

R.F. :

recirculation flow

s :

substrate

VP :

vacuum pump

x :

biomass

w :

water

References

  1. Groot, W. J.; Sikkenk, C. M.; Waldram, R. H.; van der Lans, R. G. J. M.; Luyben, K. Ch. A. M.: Kinetics of ethanol production by baker's yeast in an integrated process of fermentation and microfiltration. Accepted for publication in Bioprocess Engineering

  2. Groot, W. J.; Kraayenbrink, M. R.; Waldram, R. H.; van der Lans, R. G. J. M.; Luyben, K. Ch. A. M.: Ethanol production in an integrated process of fermentation and ethanol recovery by pervaporation. Accepted for publication in Bioprocess Engineering

  3. Groot, W. J.; Soedjak, H. S.; Donck, P. B.; van der Lans, R. G. J. M.; Luyben, K. Ch. A. M.; Timmer, J. M. K.: Butanol recovery from fermentations by liquid-liquid extraction and membrane solvent extraction. Bioproc. Eng. 5 (1990) 203–216

    Google Scholar 

  4. Tegtmeier, U.: Einsatz von Mikrofiltrationsmembranen zur Zellrückhaltung in einem kontinuierlichen Fermentationsprozeß. Report GVC VDI-meeting 1988, Heidelberg, Germany

  5. Calibo, R. L.; Matsumura, M.; Kataoka, H.: Continuous ethanol fermentation of concentrated sugar solutions coupled with membrane distillation using a PTFE module. J. Ferm. Bioeng. 67 (1989) 40–45

    Article  Google Scholar 

  6. Cho, T.; Shuler, M. L.: Multi membrane reactor for extractive fermentation. Biotechnol. Progr. 2 (1986) 53–60

    Google Scholar 

  7. Maiorella, B. L.; Blanch, H. W.; Wilke, C. R.: By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol. Bioeng. 25 (1983) 103–121

    Google Scholar 

  8. Maiorella, B. L.; Blanch, H. W.; Wilke, C. R.: Biotechnology report. Economic evaluation of alternative ethanol fermentation processes. Biotechnol. Bioeng. 26 (1984) 1003–1025

    Google Scholar 

  9. Weast, R. C. (Ed.): Handbook of Chemistry and Physics. 64th ed., 1983, CRC Press, Boca Raton

    Google Scholar 

  10. Groot, W. J.; van der Lans, R. G. J. M.; Luyben, K. Ch. A. M.: Technologies for butanol recovery from fermentations: A review. Proc. Biochem. 29 (1992) 61–75

    Article  Google Scholar 

  11. Gudernatsch, W.; Kimmerle, K.; Stroh, N.; Chmiel, H.: Recovery and concentration of high vapour pressure bioproducts by means of controlled membrane separation. J. Membr. Sci. 36 (1988) 331–342

    Google Scholar 

  12. Information on hollow fibre pervaporation modules, SEMPAS Membrantechnik GmbH, 7240 Horb am Neckar, Germany

  13. Te Hennepe, J.; Bargeman, D.; Mulder, M. H. V.; Smolders, C. A.: Zeolite-filled membranes. Part 1. Membrane preparation and pervaporation results. J. Membr. Sci. 35 (1987) 39–55

    Google Scholar 

  14. Mulder, M. H. V.: personal communication

  15. Webci/Wubo Price Booklet, Dutch Association of Cost Engineers, Leidschendam, The Netherlands, 13th ed., 1988

  16. Patel, P. N.; Mehaia, M. A.; Cheryan, M.: Cross-flow membrane filtration of yeast suspensions. J. Biotechnol. 5 (1987) 1–16

    Article  Google Scholar 

  17. Rapin, J. L.: The Betheniville pervaporation unit. The first large-scale productive plant for the dehydration of ethanol. Proc. 3rd Int. Conf. on pervaporation processes in the chemical industry, R. Bakish, Ed., Bakish Materials Corp., Englewood, New Jersey, 1988, p. 364–378

    Google Scholar 

  18. Kaschemekat, J.; Wijmans, J. G.; Baker, R. W.; Blume, I.: Separation of organics from water using pervaporation. Proc. 3rd Int. Conf. on pervaporation processes in the chemical industry, R. Bakish, Ed., Bakish Materials Corp., Englewood, New Jersey, 1988, p. 405–412

    Google Scholar 

  19. Baalen, A. van: personal communication

  20. X-Flow B. V., P.O. Box 141, 7670 AC Vriezenveen, The Netherlands

  21. Lee, F.-L.; Pahl, R. H.; Solvent screening and conceptual extractive distillation process to produce anhydrous ethanol from fermentation broth. Ind. Eng. Chem. Proc. Res. Dev. 24 (1985) 168–172

    Google Scholar 

  22. Serra, A.; Poch, M.; Sola, C.: A survey of separation systems for fermentation ethanol recovery. Proc. Biochem. 22 (1987) 154–158

    Google Scholar 

  23. Sander, U.; Soukup, P.-B.: Design and operation of a pervaporation plant for ethanol dehydration. J. Membr. Sci. 36 (1988) 463–475

    Google Scholar 

  24. Sander, U.; Soukup, P.-B.: Practical experience with pervaporation systems for liquid and vapour permeation. Proc. 3rd Int. Conf. on pervaporation processes in the chemical industry, R. Bakish, Ed., Bakish Materials Corp., Englewood, New Jersey, 1988, p. 508–518

    Google Scholar 

  25. Storkebaum, C.; Tegtmeier, U.: Patent DE 3531834 Cl, 18-Sept-1986

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groot, W.J., Kraayenbrink, M.R., van der Lans, R.G.J.M. et al. Ethanol production in an integrated fermentation/membrane system. Process simulations and economics. Bioprocess Engineering 8, 189–201 (1993). https://doi.org/10.1007/BF00369829

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369829

Keywords

Navigation