Skip to main content
Log in

On the thin-section size dependent creep strength of a single crystal nickel-base superalloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The combined effects of thin-section size, D, and microcracks on the creep behaviour of the single crystal MAR-M002 were investigated at the creep conditions of 300 MPa and 900 °C. It was observed that the creep rupture life, t R is controlled by the mean microcrack size to thin-section size, (d c/D), (or the total number, (N m), of the mean-sized microcrack particles across the diameter, assuming D/d c=Nm); reducing N m continuously improves t R. The creep rupture strain (or ductility), ε R, can be improved sharply by increasing the total number, N T, of microcrack particles across the cross-section, N TD 2 N A, where N A is the number of microcrack particles (cavity density) per cross-section. The behaviour of the creep rupture ductility was interpreted in terms of the weakest link, or “largest-flaw” concept; the observation of the higher proportion of the less likely dangerous (smaller in size) microcracks with increasing N T was the underlining reason for the improvement in ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Jackson, M. J. Donachie, M. J. Henricks and M. Gell, Metall. Trans. 8A (1977) 1615.

    Article  CAS  Google Scholar 

  2. M. Gell, D. N. Hull and A. F. Giamei, in “Proceedings of the Fourth International Symposium on Superalloys (Superalloys 1980) ”, edited by J. K. Tien, S. T. Wlodek, H. Marrow, M. Gell and G. E. Maurer (American Society for Metals, Metals Park, OH, 1980) p. 205.

    Chapter  Google Scholar 

  3. G. R. Leverent and M. Gell, Trans. AIME 245 (1969) 1167.

    Google Scholar 

  4. T. B. Gibbons, Metals Technol. 8 (1981) 472.

    Article  Google Scholar 

  5. E. G. Richards, J. Inst. Metals 96 (1968) 365.

    CAS  Google Scholar 

  6. M. C. Pandey, D. M. R. Taplin and P. R. Rao, Mater. Sci. Engng A118 (1989) 33.

    Article  CAS  Google Scholar 

  7. B. F. Dyson and S. Osgerby, Mater. Sci. Technol. 3 (1987) 545.

    Article  CAS  Google Scholar 

  8. A. Baldan, Z. Metallkd. 85 (1994) 40.

    Google Scholar 

  9. Idem, Mater. Trans., JIM, submitted.

  10. Idem, J. Mater. Sci. Lett. 13 (1994) 734.

    Article  CAS  Google Scholar 

  11. P. Vitaour, D. Coutsouradis and L. Habraken, in “Proceedings High Temperature Alloys for Gas Turbines and Other Applications”, Liege, 25–27 September, edited by D. Coutsouradis, P. Felix, H. Fischmeister, L. Habraken, Y. Lindblom and M. O. Speidel (Applied Science, London, 1978) pp. 875–891.

    Google Scholar 

  12. H. Burt, J. P. Dennison, I, C. Elliot and B. Wilshire, Mater. Sci. Engng 53 (1982) 245.

    Article  CAS  Google Scholar 

  13. A. Baldan, Internal Report (CSIR, Pretoria, South Africa, 1992).

    Google Scholar 

  14. Idem Z. Metallkd. 83 (1992) 324.

    CAS  Google Scholar 

  15. Idem, ibid. 83 (1992) 331.

    CAS  Google Scholar 

  16. Idem, ibid. 83 (1992) 750.

    CAS  Google Scholar 

  17. Idem, J. Mater. Sci. Lett. 11 (1992) 1315.

    Article  CAS  Google Scholar 

  18. Idem, ibid. 26 (1991) 3879.

    Article  CAS  Google Scholar 

  19. G. R. Leverent and M. Gell, Metall. Trans. 6A (1975) 367.

    Article  Google Scholar 

  20. M. Gell and G. R. Leverent, Acta Metall. 16 (1968) 553.

    Article  CAS  Google Scholar 

  21. J. S. Crompton and J. W. Martin, Metall. Trans. 15A (1984) 1771.

    Google Scholar 

  22. M. Doi, T. Miyazaki and T. Wakatsuki, Mater. Sci. Engng 74 (1985) 139.

    Article  CAS  Google Scholar 

  23. T. Khan, “Proceedings, High Temperature Alloys for Gas Turbines and Other Applications”, edited by W. Betz, R. Brunetaud, D. Coutsouradis, H. Fischmeister, T. B. Gibbons, I. Kvernes, Y. Lindblom, J. B. Marriot and D. B. Meadowcroft, Liege, Belgium, 6–9 October (1986) pp. 21–50.

  24. W. D. Nix, Mater. Sci. Engng A103 (1988) 103.

    Article  CAS  Google Scholar 

  25. M. F. Ashby and B. F. Dyson, in “Advances in Fracture Research (Fracture 84) ”, Proceedings of the Sixth International Conference on Fracture (ICF6), New Delhi, India, Vol. 1, edited by S. R. Valluri, D. M. R. Taplin, P. Rama Rao, J. F. Knott and R. Dubey (Pergamon Press, Oxford, 1984) pp. 3–30.

    Google Scholar 

  26. M. R. Winston and J. E. Northwood, “Solidification technology in the foundary and cast house” (Metals Society, London, 1983) pp. 298–303.

    Google Scholar 

  27. C. Lipson and N. J. Sheth, “Statistical design and analysis of engineering experiments” (McGraw-Hill, New York, 1973) pp. 36–44.

    Google Scholar 

  28. K. P. George, “Advances in Fracture Research (Fracture 84) ”, Proceedings of the Sixth International Conference on Fracture (ICF6), New Delhi, India, Vol. 5, edited by S. R. Valluri, D. M. R. Taplin, P. Rama Rao, J. F. Knott and R. Dubey (Pergamon Press, Oxford, 1984) pp. 3549–3556.

    Google Scholar 

  29. W. Weibull, Mater. Res. Studies May (1962) 405.

  30. A. S. Argon, Scripta Metall. 17 (1983) 5.

    Article  Google Scholar 

  31. P. F. Thomason, “Ductile fracture of metals” (Pergamon Press, Oxford, 1990) pp. 19–20, 115–130.

    Google Scholar 

  32. F. C. Monkman and N. J. Grant, Proc. ASTM 56 (1956) 593.

    Google Scholar 

  33. F. Dobes and K. Milicka, Met. Sci. 10 (1976) 382.

    Article  CAS  Google Scholar 

  34. A. K. Koul, R. Castillo and K. Willett, Mater. Sci. Engng 66 (1984) 213.

    Article  CAS  Google Scholar 

  35. R. W. Evans, J. D. Parker and B. Wilshire, “Recent advances in creep and fracture of engineering materials and structures”, edited by B. Wilshire and D. R. Owen (Pineridge Press, Swansea, 1982) p. 135.

    Google Scholar 

  36. A. Baldan, J. Mater. Sci. Lett., submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldan, A. On the thin-section size dependent creep strength of a single crystal nickel-base superalloy. Journal of Materials Science 30, 6288–6298 (1995). https://doi.org/10.1007/BF00369679

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369679

Keywords

Navigation